Cargando…

TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence

Transcription is tightly regulated by cis-regulatory DNA elements where transcription factors (TFs) can bind. Thus, identification of TF binding sites (TFBSs) is key to understanding gene expression and whole regulatory networks within a cell. The standard approaches used for TFBS prediction, such a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Ningxin, Boyle, Alan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397869/
https://www.ncbi.nlm.nih.gov/pubmed/32660981
http://dx.doi.org/10.1101/gr.258228.119
Descripción
Sumario:Transcription is tightly regulated by cis-regulatory DNA elements where transcription factors (TFs) can bind. Thus, identification of TF binding sites (TFBSs) is key to understanding gene expression and whole regulatory networks within a cell. The standard approaches used for TFBS prediction, such as position weight matrices (PWMs) and chromatin immunoprecipitation followed by sequencing (ChIP-seq), are widely used but have their drawbacks, including high false-positive rates and limited antibody availability, respectively. Several computational footprinting algorithms have been developed to detect TFBSs by investigating chromatin accessibility patterns; however, these also have limitations. We have developed a footprinting method to predict TF footprints in active chromatin elements (TRACE) to improve the prediction of TFBS footprints. TRACE incorporates DNase-seq data and PWMs within a multivariate hidden Markov model (HMM) to detect footprint-like regions with matching motifs. TRACE is an unsupervised method that accurately annotates binding sites for specific TFs automatically with no requirement for pregenerated candidate binding sites or ChIP-seq training data. Compared with published footprinting algorithms, TRACE has the best overall performance with the distinct advantage of targeting multiple motifs in a single model.