Cargando…
Evaluation of an active live yeast (Levucell Saccharomyces cerevisiae, CNCM l-1077) on receiving and backgrounding period growth performance and efficiency of dietary net energy utilization in low health risk beef steers()
The objective of this experiment was to evaluate the influence of an active live yeast direct-fed microbial (DFM) product on receiving and backgrounding period growth performance and efficiency of dietary net energy (NE) utilization in low health risk beef steers. Maine-Anjou × Angus steers (n = 199...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398567/ https://www.ncbi.nlm.nih.gov/pubmed/32766530 http://dx.doi.org/10.1093/tas/txaa127 |
Sumario: | The objective of this experiment was to evaluate the influence of an active live yeast direct-fed microbial (DFM) product on receiving and backgrounding period growth performance and efficiency of dietary net energy (NE) utilization in low health risk beef steers. Maine-Anjou × Angus steers (n = 199; body weight [BW] = 252 ± 32.1 kg) were received from two sources at the Ruminant Nutrition Center in Brookings, SD, in November 2019 and used in a 77-d feedlot receiving and backgrounding experiment. Steers were provided access to long-stem hay and ad libitum water upon arrival. Steers were weighed, vaccinated for respiratory pathogens (source 2 only): infectious bovine rhinotracheitis, bovine viral diarrhea types 1 and 2, parainfluenza-3 virus, and bovine respiratory syncytial virus (Bovi-Shield Gold 5, Zoetis, Parsippany, NJ) vaccinated for clostridial species (Ultrabac 7/Somubac, Zoetis) and pour-on moxidectin (Cydectin, Bayer, Shawnee Mission, KS). Steers (n = 176 steers; initial unshrunk BW = 235 ± 27.6 kg) were allotted to pens (n = 20 pens; 10 pens per treatment; eight or nine steers per pen). Diets were based upon corn silage, dry-rolled corn, and dried distillers grains; dietary treatments were 1) no DFM (CON) and 2) DFM (Levucell SC, Advantage Titan, CNCM l-1077), fed at 10 g/steer/d providing 8 × 10(9) CFU of active live yeast to each steer daily (DFM). Initial BW was the average of day −1 and day 1 BW (n = 176 steers; initial BW = 253 ± 27.6 kg). On day 21, steers received a 200-mg progesterone and 20-mg estradiol benzoate implant. Data were analyzed from day 1 to 47 (receiving period), day 48 to 77, and from day 1 to 77 as a randomized complete block design; pen served as the experimental unit for all analyses. On day 47 of the experiment, DFM had greater BW (P = 0.01) by 0.9% and average daily gain (ADG; P = 0.01) by 4.2% and gain-to-feed ratio (G:F) tended (P = 0.13) to be 2.8% greater. Day 77 BW did not differ (P = 0.60), cumulative (days 1–77): ADG (P = 0.47), dry matter intake (P = 0.66), and G:F (P = 0.56) were similar. Yeast inclusion had no appreciable influence on performance-based dietary NE utilization or the ratio of observed/expected dietary NE (P ≥ 0.59). In low health risk steers, DFM improved performance during the feedlot receiving period. However, no improvements for DFM were detected for cumulative performance from day 1 to 77. The confirmation of yeast counts indicated the CFU to be above the expected level at the start of the trial but was found below expected level at the end of the trial. This may explain differences during the initial 47 d compared to cumulative growth performance results. |
---|