Cargando…

Dietary Oligofructose Alone or in Combination with 2′-Fucosyllactose Differentially Improves Recognition Memory and Hippocampal mRNA Expression

Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2′-fucosyllactose (2′-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on p...

Descripción completa

Detalles Bibliográficos
Autores principales: Fleming, Stephen A., Mudd, Austin T., Hauser, Jonas, Yan, Jian, Metairon, Sylviane, Steiner, Pascal, Donovan, Sharon M., Dilger, Ryan N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400822/
https://www.ncbi.nlm.nih.gov/pubmed/32709093
http://dx.doi.org/10.3390/nu12072131
Descripción
Sumario:Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2′-fucosyllactose (2′-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of three milk replacers formulated to contain OF, OF + 2′-FL, or no oligosaccharides (CON). Pigs were tested on the novel object recognition task using delays of 1 or 48 h at PND 22. At PND 32–33, magnetic resonance imaging (MRI) procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs that consumed the OF diet demonstrated increased recognition memory after a 1 h delay, whereas those consuming diets containing OF + 2′-FL displayed increased recognition memory after a 48 h delay. Pigs fed OF or OF + 2′-FL exhibited a larger relative volume of the olfactory bulbs compared with CON pigs. Provision of OF or OF + 2′-FL altered gene expression related to dopaminergic, GABAergic, cholinergic, cell adhesion, and chromatin remodeling processes. Collectively, these data indicate that dietary OF and OF + 2′-FL differentially improve cognitive performance and affect olfactory bulb structural development and hippocampal gene expression.