Cargando…
A Novel Synthetic Compound (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile Inhibits TNFα-Induced MMP9 Expression via EGR-1 Downregulation in MDA-MB-231 Human Breast Cancer Cells
Breast cancer is a common malignancy among women worldwide. Gelatinases such as matrix metallopeptidase 2 (MMP2) and MMP9 play crucial roles in cancer cell migration, invasion, and metastasis. To develop a novel platform compound, we synthesized a flavonoid derivative, (E)-5-((4-oxo-4H-chromen-3-yl)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404000/ https://www.ncbi.nlm.nih.gov/pubmed/32708426 http://dx.doi.org/10.3390/ijms21145080 |
Sumario: | Breast cancer is a common malignancy among women worldwide. Gelatinases such as matrix metallopeptidase 2 (MMP2) and MMP9 play crucial roles in cancer cell migration, invasion, and metastasis. To develop a novel platform compound, we synthesized a flavonoid derivative, (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile (named DK4023) and characterized its inhibitory effects on the motility and MMP2 and MMP9 expression of highly metastatic MDA-MB-231 breast cancer cells. We found that DK4023 inhibited tumor necrosis factor alpha (TNFα)-induced motility and F-actin formation of MDA-MB-231 cells. DK4023 also suppressed the TNFα-induced mRNA expression of MMP9 through the downregulation of the TNFα-extracellular signal-regulated kinase (ERK)/early growth response 1 (EGR-1) signaling axis. These results suggest that DK4023 could serve as a potential platform compound for the development of novel chemopreventive/chemotherapeutic agents against invasive breast cancer. |
---|