Cargando…
Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria
Bacillus subtilis produces eight industrially important exo-proteases. For the detection of proteases, the activity- and antibody-based assays are normally used. Current activity-based assays require expensive multiplex chemical substrates which allow specificity determination of each enzyme. In thi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404251/ https://www.ncbi.nlm.nih.gov/pubmed/32664686 http://dx.doi.org/10.3390/ijms21144924 |
_version_ | 1783567107715235840 |
---|---|
author | Toymentseva, Anna A. Koryagina, Anastasia O. Laikov, Alexander V. Sharipova, Margarita R. |
author_facet | Toymentseva, Anna A. Koryagina, Anastasia O. Laikov, Alexander V. Sharipova, Margarita R. |
author_sort | Toymentseva, Anna A. |
collection | PubMed |
description | Bacillus subtilis produces eight industrially important exo-proteases. For the detection of proteases, the activity- and antibody-based assays are normally used. Current activity-based assays require expensive multiplex chemical substrates which allow specificity determination of each enzyme. In this study, we provide evidences pertaining to the usefulness of the label-free multiple reaction monitoring (MRM) assay for a rapid identification and quantitation of specific proteins in bacteria. We used wild-type B. pumilus cells producing at least two serine proteases, subtilisin-like protease (AprBp) and glutamyl endopeptidase (GseBp), as well as optimized recombinant B. subtilis cells containing the same protease genes under control of the LIKE expression system. The Skyline software was used for the selection of three specific proteotypic peptides and their fragment ions for quantification and confirmation of AprBp and GseBp in complex mixtures. MRM indicated that the production of AprBp and GseBp exo-enzymes were respectively 0.9- and 26.6-fold higher in the culture medium of B. pumilus strain in comparison to the recombinant B. subtilis strains carrying optimized LIKE expression systems under identical conditions. The developed procedure in this study is fast, easy to perform and dependable. Additionally, it achieves accurate proteins identification and quantification in complex mixture. |
format | Online Article Text |
id | pubmed-7404251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74042512020-08-11 Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria Toymentseva, Anna A. Koryagina, Anastasia O. Laikov, Alexander V. Sharipova, Margarita R. Int J Mol Sci Article Bacillus subtilis produces eight industrially important exo-proteases. For the detection of proteases, the activity- and antibody-based assays are normally used. Current activity-based assays require expensive multiplex chemical substrates which allow specificity determination of each enzyme. In this study, we provide evidences pertaining to the usefulness of the label-free multiple reaction monitoring (MRM) assay for a rapid identification and quantitation of specific proteins in bacteria. We used wild-type B. pumilus cells producing at least two serine proteases, subtilisin-like protease (AprBp) and glutamyl endopeptidase (GseBp), as well as optimized recombinant B. subtilis cells containing the same protease genes under control of the LIKE expression system. The Skyline software was used for the selection of three specific proteotypic peptides and their fragment ions for quantification and confirmation of AprBp and GseBp in complex mixtures. MRM indicated that the production of AprBp and GseBp exo-enzymes were respectively 0.9- and 26.6-fold higher in the culture medium of B. pumilus strain in comparison to the recombinant B. subtilis strains carrying optimized LIKE expression systems under identical conditions. The developed procedure in this study is fast, easy to perform and dependable. Additionally, it achieves accurate proteins identification and quantification in complex mixture. MDPI 2020-07-12 /pmc/articles/PMC7404251/ /pubmed/32664686 http://dx.doi.org/10.3390/ijms21144924 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Toymentseva, Anna A. Koryagina, Anastasia O. Laikov, Alexander V. Sharipova, Margarita R. Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria |
title | Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria |
title_full | Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria |
title_fullStr | Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria |
title_full_unstemmed | Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria |
title_short | Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria |
title_sort | label-free multiple reaction monitoring, a promising method for quantification analyses of specific proteins in bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404251/ https://www.ncbi.nlm.nih.gov/pubmed/32664686 http://dx.doi.org/10.3390/ijms21144924 |
work_keys_str_mv | AT toymentsevaannaa labelfreemultiplereactionmonitoringapromisingmethodforquantificationanalysesofspecificproteinsinbacteria AT koryaginaanastasiao labelfreemultiplereactionmonitoringapromisingmethodforquantificationanalysesofspecificproteinsinbacteria AT laikovalexanderv labelfreemultiplereactionmonitoringapromisingmethodforquantificationanalysesofspecificproteinsinbacteria AT sharipovamargaritar labelfreemultiplereactionmonitoringapromisingmethodforquantificationanalysesofspecificproteinsinbacteria |