Cargando…
Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film
A simple micro-machined pressure sensor, based on the stress-impedance (SI) effect, was fabricated herein using typical micro-fabrication technologies. To sense pressure, a 1-µm thin, soft magnetic metallic film of FeSiB was sputtered and used as a diaphragm. Its electrical response (impedance chang...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407212/ https://www.ncbi.nlm.nih.gov/pubmed/32629856 http://dx.doi.org/10.3390/mi11070649 |
_version_ | 1783567574320021504 |
---|---|
author | Froemel, Joerg Akita, Satoru Tanaka, Shuji |
author_facet | Froemel, Joerg Akita, Satoru Tanaka, Shuji |
author_sort | Froemel, Joerg |
collection | PubMed |
description | A simple micro-machined pressure sensor, based on the stress-impedance (SI) effect, was fabricated herein using typical micro-fabrication technologies. To sense pressure, a 1-µm thin, soft magnetic metallic film of FeSiB was sputtered and used as a diaphragm. Its electrical response (impedance change) was measured under pressure in a frequency band from 5 to 500 MHz. A lumped-element equivalent electric circuit was used to separate the impedance of the soft magnetic metal from other parasitic elements. The impedance change clearly depended on the applied pressure. It was also shown that the impedance change could be explained by a change in relative permeability, according to the theory of the SI effect. The radial stress in the diaphragm and the relative permeability exhibited a linear relationship. At a measurement frequency of 200 MHz, the largest sensor response, with a gauge factor of 385.7, was found. It was in the same order as the conventional sensors. As the proposed device is very simple, it has the potential for application as a cheap pressure sensor. |
format | Online Article Text |
id | pubmed-7407212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74072122020-08-11 Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film Froemel, Joerg Akita, Satoru Tanaka, Shuji Micromachines (Basel) Article A simple micro-machined pressure sensor, based on the stress-impedance (SI) effect, was fabricated herein using typical micro-fabrication technologies. To sense pressure, a 1-µm thin, soft magnetic metallic film of FeSiB was sputtered and used as a diaphragm. Its electrical response (impedance change) was measured under pressure in a frequency band from 5 to 500 MHz. A lumped-element equivalent electric circuit was used to separate the impedance of the soft magnetic metal from other parasitic elements. The impedance change clearly depended on the applied pressure. It was also shown that the impedance change could be explained by a change in relative permeability, according to the theory of the SI effect. The radial stress in the diaphragm and the relative permeability exhibited a linear relationship. At a measurement frequency of 200 MHz, the largest sensor response, with a gauge factor of 385.7, was found. It was in the same order as the conventional sensors. As the proposed device is very simple, it has the potential for application as a cheap pressure sensor. MDPI 2020-06-30 /pmc/articles/PMC7407212/ /pubmed/32629856 http://dx.doi.org/10.3390/mi11070649 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Froemel, Joerg Akita, Satoru Tanaka, Shuji Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film |
title | Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film |
title_full | Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film |
title_fullStr | Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film |
title_full_unstemmed | Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film |
title_short | Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film |
title_sort | simple device to measure pressure using the stress impedance effect of amorphous soft magnetic thin film |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407212/ https://www.ncbi.nlm.nih.gov/pubmed/32629856 http://dx.doi.org/10.3390/mi11070649 |
work_keys_str_mv | AT froemeljoerg simpledevicetomeasurepressureusingthestressimpedanceeffectofamorphoussoftmagneticthinfilm AT akitasatoru simpledevicetomeasurepressureusingthestressimpedanceeffectofamorphoussoftmagneticthinfilm AT tanakashuji simpledevicetomeasurepressureusingthestressimpedanceeffectofamorphoussoftmagneticthinfilm |