Cargando…

An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages

Pyroptosis has emerged as a key mechanism by which inflammasomes promote host defense against microbial pathogens and sterile inflammation. Gasdermin D (GSDMD)-mediated cell lysis is a hallmark of pyroptosis, but our understanding of cell death signaling during pyroptosis is fragmented. Here, we sho...

Descripción completa

Detalles Bibliográficos
Autores principales: de Vasconcelos, Nathalia Moraes, Van Opdenbosch, Nina, Van Gorp, Hanne, Martín-Pérez, Rosa, Zecchin, Annalisa, Vandenabeele, Peter, Lamkanfi, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408007/
https://www.ncbi.nlm.nih.gov/pubmed/32726624
http://dx.doi.org/10.1016/j.celrep.2020.107959
Descripción
Sumario:Pyroptosis has emerged as a key mechanism by which inflammasomes promote host defense against microbial pathogens and sterile inflammation. Gasdermin D (GSDMD)-mediated cell lysis is a hallmark of pyroptosis, but our understanding of cell death signaling during pyroptosis is fragmented. Here, we show that independently of GSDMD-mediated plasma membrane permeabilization, inflammasome receptors engage caspase-1 and caspase-8, both of which redundantly promote activation of apoptotic executioner caspase-3 and caspase-7 in pyroptotic macrophages. Impaired GSDMD pore formation downstream of caspase-1 and caspase-8 activation suffices to unmask the apoptotic phenotype of pyroptotic macrophages. Combined inactivation of initiator caspase-1 and caspase-8, or executioner caspase-3 and caspase-7, is required to abolish inflammasome-induced DEVDase activity during pyroptosis and in apoptotic Gsdmd(−/−) cells. Collectively, these results unveil a robust apoptotic caspase network that is activated in parallel to GSDMD-mediated plasma membrane permeabilization and safeguards cell death induction in pyroptotic macrophages.