Cargando…
Bivalent Inhibitor with Selectivity for Trimeric MMP-9 Amplifies Neutrophil Chemotaxis and Enables Functional Studies on MMP-9 Proteoforms
A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an interesting...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408547/ https://www.ncbi.nlm.nih.gov/pubmed/32645949 http://dx.doi.org/10.3390/cells9071634 |
Sumario: | A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an interesting approach to control inflammation. We evaluated the potential of a bivalent carboxylate inhibitor to selectively inhibit the trimeric proteoform of MMP-9 and compared this with a corresponding monovalent inhibitor. The bivalent inhibitor efficiently inhibited trimeric MMP-9 (IC(50) = 0.1 nM), with at least 500-fold selectivity for MMP-9 trimers over monomers. Surprisingly, in a mouse model for chemotaxis, the bivalent inhibitor amplified leukocyte influxes towards lipopolysaccharide-induced inflammation. We verified by microscopic and flow cytometry analysis increased amounts of neutrophils. In a mouse model for endotoxin shock, mice treated with the bivalent inhibitor had significantly increased levels of MMP-9 in plasma and lungs, indicative for increased inflammation. In conclusion, we propose a new role for MMP-9 trimers in tempering excessive neutrophil migration. In addition, we have identified a small molecule inhibitor with a high selectivity for the trimeric proteoform of MMP-9, which will allow further research on the functions of MMP-9 proteoforms. |
---|