Cargando…
Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect
Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type–specific stress responses and effects of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409372/ https://www.ncbi.nlm.nih.gov/pubmed/32737078 http://dx.doi.org/10.26508/lsa.202000797 |
_version_ | 1783568049892229120 |
---|---|
author | Ignatenko, Olesia Nikkanen, Joni Kononov, Alexander Zamboni, Nicola Ince-Dunn, Gulayse Suomalainen, Anu |
author_facet | Ignatenko, Olesia Nikkanen, Joni Kononov, Alexander Zamboni, Nicola Ince-Dunn, Gulayse Suomalainen, Anu |
author_sort | Ignatenko, Olesia |
collection | PubMed |
description | Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type–specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. These mice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKO(astro)) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISR(mt)) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISR(mt). Both KD and rapamycin lead to rapid deterioration and weight loss of TwKO(astro) and premature trial termination. Although rapamycin had no robust effects on TwKO(astro) brain pathology, KD exacerbated spongiosis, gliosis, and ISR(mt). Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression. |
format | Online Article Text |
id | pubmed-7409372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-74093722020-08-21 Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect Ignatenko, Olesia Nikkanen, Joni Kononov, Alexander Zamboni, Nicola Ince-Dunn, Gulayse Suomalainen, Anu Life Sci Alliance Research Articles Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type–specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. These mice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKO(astro)) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISR(mt)) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISR(mt). Both KD and rapamycin lead to rapid deterioration and weight loss of TwKO(astro) and premature trial termination. Although rapamycin had no robust effects on TwKO(astro) brain pathology, KD exacerbated spongiosis, gliosis, and ISR(mt). Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression. Life Science Alliance LLC 2020-07-31 /pmc/articles/PMC7409372/ /pubmed/32737078 http://dx.doi.org/10.26508/lsa.202000797 Text en © 2020 Ignatenko et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Ignatenko, Olesia Nikkanen, Joni Kononov, Alexander Zamboni, Nicola Ince-Dunn, Gulayse Suomalainen, Anu Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
title | Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
title_full | Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
title_fullStr | Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
title_full_unstemmed | Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
title_short | Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
title_sort | mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409372/ https://www.ncbi.nlm.nih.gov/pubmed/32737078 http://dx.doi.org/10.26508/lsa.202000797 |
work_keys_str_mv | AT ignatenkoolesia mitochondrialspongioticbraindiseaseastrocyticstressandharmfulrapamycinandketosiseffect AT nikkanenjoni mitochondrialspongioticbraindiseaseastrocyticstressandharmfulrapamycinandketosiseffect AT kononovalexander mitochondrialspongioticbraindiseaseastrocyticstressandharmfulrapamycinandketosiseffect AT zamboninicola mitochondrialspongioticbraindiseaseastrocyticstressandharmfulrapamycinandketosiseffect AT incedunngulayse mitochondrialspongioticbraindiseaseastrocyticstressandharmfulrapamycinandketosiseffect AT suomalainenanu mitochondrialspongioticbraindiseaseastrocyticstressandharmfulrapamycinandketosiseffect |