Cargando…
Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements
Some robotic localization methods, such as ultra wideband localization and lighthouse localization, require external localization infrastructure in order to operate. However, there are situations where this localization infrastructure does not exist in the field, such as robotic exploration tasks. D...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411599/ https://www.ncbi.nlm.nih.gov/pubmed/32668609 http://dx.doi.org/10.3390/s20143888 |
_version_ | 1783568415501320192 |
---|---|
author | Kilberg, Brian G. Campos, Felipe M. R. Schindler, Craig B. Pister, Kristofer S. J. |
author_facet | Kilberg, Brian G. Campos, Felipe M. R. Schindler, Craig B. Pister, Kristofer S. J. |
author_sort | Kilberg, Brian G. |
collection | PubMed |
description | Some robotic localization methods, such as ultra wideband localization and lighthouse localization, require external localization infrastructure in order to operate. However, there are situations where this localization infrastructure does not exist in the field, such as robotic exploration tasks. Deploying low power wireless sensor networks (WSNs) as localization infrastructure can potentially solve this problem. In this work, we demonstrate the use of an OpenWSN network of miniaturized low power sensor nodes as localization infrastructure. We demonstrate a quadrotor performing laser-based relative bearing measurements of stationary wireless sensor nodes with known locations and using these measurements to localize itself. These laser-based measurements require little computation on the WSN nodes, and are compatible with state-of-the-art 2 mm × 3 mm monolithic wireless system-on-chips (SoCs). These capabilities were demonstrated on a Crazyflie quadcopter using an Extended Kalman Filter and a network of motes running the OpenWSN wireless sensor network stack. The RMS error for X positioning was 0.57 m and the error for Y positioning was 0.39 m. This is the first use of an OpenWSN sensor network to support robotic localization. Furthermore, simulations show that these same measurements could be used for localizing sensor motes with unknown locations in the future. |
format | Online Article Text |
id | pubmed-7411599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74115992020-08-17 Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements Kilberg, Brian G. Campos, Felipe M. R. Schindler, Craig B. Pister, Kristofer S. J. Sensors (Basel) Article Some robotic localization methods, such as ultra wideband localization and lighthouse localization, require external localization infrastructure in order to operate. However, there are situations where this localization infrastructure does not exist in the field, such as robotic exploration tasks. Deploying low power wireless sensor networks (WSNs) as localization infrastructure can potentially solve this problem. In this work, we demonstrate the use of an OpenWSN network of miniaturized low power sensor nodes as localization infrastructure. We demonstrate a quadrotor performing laser-based relative bearing measurements of stationary wireless sensor nodes with known locations and using these measurements to localize itself. These laser-based measurements require little computation on the WSN nodes, and are compatible with state-of-the-art 2 mm × 3 mm monolithic wireless system-on-chips (SoCs). These capabilities were demonstrated on a Crazyflie quadcopter using an Extended Kalman Filter and a network of motes running the OpenWSN wireless sensor network stack. The RMS error for X positioning was 0.57 m and the error for Y positioning was 0.39 m. This is the first use of an OpenWSN sensor network to support robotic localization. Furthermore, simulations show that these same measurements could be used for localizing sensor motes with unknown locations in the future. MDPI 2020-07-13 /pmc/articles/PMC7411599/ /pubmed/32668609 http://dx.doi.org/10.3390/s20143888 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kilberg, Brian G. Campos, Felipe M. R. Schindler, Craig B. Pister, Kristofer S. J. Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements |
title | Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements |
title_full | Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements |
title_fullStr | Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements |
title_full_unstemmed | Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements |
title_short | Quadrotor-Based Lighthouse Localization with Time-Synchronized Wireless Sensor Nodes and Bearing-Only Measurements |
title_sort | quadrotor-based lighthouse localization with time-synchronized wireless sensor nodes and bearing-only measurements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411599/ https://www.ncbi.nlm.nih.gov/pubmed/32668609 http://dx.doi.org/10.3390/s20143888 |
work_keys_str_mv | AT kilbergbriang quadrotorbasedlighthouselocalizationwithtimesynchronizedwirelesssensornodesandbearingonlymeasurements AT camposfelipemr quadrotorbasedlighthouselocalizationwithtimesynchronizedwirelesssensornodesandbearingonlymeasurements AT schindlercraigb quadrotorbasedlighthouselocalizationwithtimesynchronizedwirelesssensornodesandbearingonlymeasurements AT pisterkristofersj quadrotorbasedlighthouselocalizationwithtimesynchronizedwirelesssensornodesandbearingonlymeasurements |