Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide
The objective of this research was to determine the durability of an engineered cementitious composite (ECC) incorporating crumb rubber (CR) and graphene oxide (GO) with respect to resistance to acid and sulphate attacks. To obtain the mix designs used for this study, response surface methodology (R...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411837/ https://www.ncbi.nlm.nih.gov/pubmed/32668788 http://dx.doi.org/10.3390/ma13143125 |
_version_ | 1783568470915416064 |
---|---|
author | Sabapathy, Lavaniyah Mohammed, Bashar S. Al-Fakih, Amin Wahab, Mubarak Mohammed A Liew, M. S. Amran, Y. H. Mugahed |
author_facet | Sabapathy, Lavaniyah Mohammed, Bashar S. Al-Fakih, Amin Wahab, Mubarak Mohammed A Liew, M. S. Amran, Y. H. Mugahed |
author_sort | Sabapathy, Lavaniyah |
collection | PubMed |
description | The objective of this research was to determine the durability of an engineered cementitious composite (ECC) incorporating crumb rubber (CR) and graphene oxide (GO) with respect to resistance to acid and sulphate attacks. To obtain the mix designs used for this study, response surface methodology (RSM) was utilized, which yielded the composition of 13 mixes containing two variables (crumb rubber and graphene oxide). The crumb rubber had a percentage range of 0–10%, whereas the graphene oxide was tested in the range of 0.01–0.05% by volume. Three types of laboratory tests were used in this study, namely a compressive test, an acid attack test to study its durability against an acidic environment, and a sulphate attack test to examine the length change while exposed to a sulphate solution. Response surface methodology helped develop predictive responsive models and multiple objectives that aided in the optimization of results obtained from the experiments. Furthermore, a rubberized engineered cementitious composite incorporating graphene oxide yielded better chemical attack results compared to those of a normal rubberized engineered cementitious composite. In conclusion, nano-graphene in the form of graphene oxide has the ability to enhance the properties and overcome the limitations of crumb rubber incorporated into an engineered cementitious composite. The optimal mix was attained with 10% crumb rubber and 0.01 graphene oxide that achieved 43.6 MPa compressive strength, 29.4% weight loss, and 2.19% expansion. The addition of GO enhances the performance of rubberized ECC, contributing to less weight loss due to the deterioration of acidic media on the ECC. It also contributes to better resistance to changes in the length of the rubberized ECC samples. |
format | Online Article Text |
id | pubmed-7411837 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74118372020-08-25 Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide Sabapathy, Lavaniyah Mohammed, Bashar S. Al-Fakih, Amin Wahab, Mubarak Mohammed A Liew, M. S. Amran, Y. H. Mugahed Materials (Basel) Article The objective of this research was to determine the durability of an engineered cementitious composite (ECC) incorporating crumb rubber (CR) and graphene oxide (GO) with respect to resistance to acid and sulphate attacks. To obtain the mix designs used for this study, response surface methodology (RSM) was utilized, which yielded the composition of 13 mixes containing two variables (crumb rubber and graphene oxide). The crumb rubber had a percentage range of 0–10%, whereas the graphene oxide was tested in the range of 0.01–0.05% by volume. Three types of laboratory tests were used in this study, namely a compressive test, an acid attack test to study its durability against an acidic environment, and a sulphate attack test to examine the length change while exposed to a sulphate solution. Response surface methodology helped develop predictive responsive models and multiple objectives that aided in the optimization of results obtained from the experiments. Furthermore, a rubberized engineered cementitious composite incorporating graphene oxide yielded better chemical attack results compared to those of a normal rubberized engineered cementitious composite. In conclusion, nano-graphene in the form of graphene oxide has the ability to enhance the properties and overcome the limitations of crumb rubber incorporated into an engineered cementitious composite. The optimal mix was attained with 10% crumb rubber and 0.01 graphene oxide that achieved 43.6 MPa compressive strength, 29.4% weight loss, and 2.19% expansion. The addition of GO enhances the performance of rubberized ECC, contributing to less weight loss due to the deterioration of acidic media on the ECC. It also contributes to better resistance to changes in the length of the rubberized ECC samples. MDPI 2020-07-13 /pmc/articles/PMC7411837/ /pubmed/32668788 http://dx.doi.org/10.3390/ma13143125 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sabapathy, Lavaniyah Mohammed, Bashar S. Al-Fakih, Amin Wahab, Mubarak Mohammed A Liew, M. S. Amran, Y. H. Mugahed Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide |
title | Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide |
title_full | Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide |
title_fullStr | Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide |
title_full_unstemmed | Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide |
title_short | Acid and Sulphate Attacks on a Rubberized Engineered Cementitious Composite Containing Graphene Oxide |
title_sort | acid and sulphate attacks on a rubberized engineered cementitious composite containing graphene oxide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411837/ https://www.ncbi.nlm.nih.gov/pubmed/32668788 http://dx.doi.org/10.3390/ma13143125 |
work_keys_str_mv | AT sabapathylavaniyah acidandsulphateattacksonarubberizedengineeredcementitiouscompositecontaininggrapheneoxide AT mohammedbashars acidandsulphateattacksonarubberizedengineeredcementitiouscompositecontaininggrapheneoxide AT alfakihamin acidandsulphateattacksonarubberizedengineeredcementitiouscompositecontaininggrapheneoxide AT wahabmubarakmohammeda acidandsulphateattacksonarubberizedengineeredcementitiouscompositecontaininggrapheneoxide AT liewms acidandsulphateattacksonarubberizedengineeredcementitiouscompositecontaininggrapheneoxide AT amranyhmugahed acidandsulphateattacksonarubberizedengineeredcementitiouscompositecontaininggrapheneoxide |