Cargando…
Does Determination of Initial Cluster Centroids Improve the Performance of K-Means Clustering Algorithm? Comparison of Three Hybrid Methods by Genetic Algorithm, Minimum Spanning Tree, and Hierarchical Clustering in an Applied Study
Random selection of initial centroids (centers) for clusters is a fundamental defect in K-means clustering algorithm as the algorithm's performance depends on initial centroids and may end up in local optimizations. Various hybrid methods have been introduced to resolve this defect in K-means c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416251/ https://www.ncbi.nlm.nih.gov/pubmed/32802153 http://dx.doi.org/10.1155/2020/7636857 |