Cargando…
Does Determination of Initial Cluster Centroids Improve the Performance of K-Means Clustering Algorithm? Comparison of Three Hybrid Methods by Genetic Algorithm, Minimum Spanning Tree, and Hierarchical Clustering in an Applied Study
Random selection of initial centroids (centers) for clusters is a fundamental defect in K-means clustering algorithm as the algorithm's performance depends on initial centroids and may end up in local optimizations. Various hybrid methods have been introduced to resolve this defect in K-means c...
Autores principales: | Pourahmad, Saeedeh, Basirat, Atefeh, Rahimi, Amir, Doostfatemeh, Marziyeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416251/ https://www.ncbi.nlm.nih.gov/pubmed/32802153 http://dx.doi.org/10.1155/2020/7636857 |
Ejemplares similares
-
A Novel Minimum Spanning Tree Clustering Algorithm Based on Density Core
por: Gao, Qiang, et al.
Publicado: (2022) -
A Clustering-Enhanced Memetic Algorithm for the Quadratic Minimum Spanning Tree Problem
por: Zhang, Shufan, et al.
Publicado: (2022) -
Centroid-Based Clustering with αβ-Divergences
por: Sarmiento, Auxiliadora, et al.
Publicado: (2019) -
Image Clustering Algorithm Based on Predefined Evenly-Distributed Class Centroids and Composite Cosine Distance
por: Zhu, Qiuyu, et al.
Publicado: (2022) -
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008)