Cargando…

Two Stage Designs for Phase III Clinical Trials

Phase III platform trials are increasingly used to evaluate a sequence of treatments for a specific disease. Traditional approaches to structure such trials tend to focus on the sequential questions rather than the performance of the entire enterprise. We consider two-stage trials where an early eva...

Descripción completa

Detalles Bibliográficos
Autores principales: Follmann, Dean, Proschan, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418751/
https://www.ncbi.nlm.nih.gov/pubmed/32793927
http://dx.doi.org/10.1101/2020.07.29.20164525
Descripción
Sumario:Phase III platform trials are increasingly used to evaluate a sequence of treatments for a specific disease. Traditional approaches to structure such trials tend to focus on the sequential questions rather than the performance of the entire enterprise. We consider two-stage trials where an early evaluation is used to determine whether to continue with an individual study. To evaluate performance, we use the ratio of expected wins (RW), that is, the expected number of reported efficacious treatments using a two-stage approach compared to that using standard phase III trials. We approximate the test statistics during the course of a single trial using Brownian Motion and determine the optimal stage 1 time and type I error rate to maximize RW for fixed power. At times, a surrogate or intermediate endpoint may provide a quicker read on potential efficacy than use of the primary endpoint at stage 1. We generalize our approach to the surrogate endpoint setting and show improved performance, provided a good quality and powerful surrogate is available. We apply our methods to the design of a platform trial to evaluate treatments for COVID-19 disease.