Cargando…

A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation

BACKGROUND: Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement...

Descripción completa

Detalles Bibliográficos
Autores principales: Stewart, Ashley, Pretty, Christopher, Chen, Xiaoqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422522/
https://www.ncbi.nlm.nih.gov/pubmed/32903348
http://dx.doi.org/10.1186/s42490-019-0028-6
Descripción
Sumario:BACKGROUND: Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability. This work details the construction and testing of a novel assist-as-need upper-extremity hybrid exoskeleton which uses model-based Functional Electrical Stimulation control to delay Functional Electrical Stimulation induced muscle fatigue. The hybrid control is compared with Functional Electrical Stimulation only control on a healthy subject. RESULTS: The hybrid system produced 24° less average angle error and 13.2° less Root Mean Square Error, than Functional Electrical Stimulation on its own and showed a reduction in Functional Electrical Stimulation induced fatigue. CONCLUSION: As far as the authors are aware, this is the study which provides evidence of the advantages of hybrid exoskeletons compared to use of Functional Electrical Stimulation on its own with regards to the delay of Functional Electrical Stimulation induced muscle fatigue.