Cargando…

Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance

Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 is regulated by a suite of co-chaperone molecules...

Descripción completa

Detalles Bibliográficos
Autores principales: Nitika, Blackman, Jacob S., Knighton, Laura E., Takakuwa, Jade E., Calderwood, Stuart K., Truman, Andrew W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429498/
https://www.ncbi.nlm.nih.gov/pubmed/32796891
http://dx.doi.org/10.1038/s41598-020-70764-x
Descripción
Sumario:Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 is regulated by a suite of co-chaperone molecules that bring “clients” to the primary chaperone for efficient folding. Rather than targeting Hsp70 itself, here we have examined the feasibility of inhibiting the Hsp70 co-chaperone DNAJA1 as a novel anticancer strategy. We found DNAJA1 to be upregulated in a variety of cancers, suggesting a role in malignancy. To confirm this role, we screened the NIH Approved Oncology collection for chemical-genetic interactions with loss of DNAJA1 in cancer. 41 compounds showed strong synergy with DNAJA1 loss, whereas 18 dramatically lost potency. Several hits were validated using a DNAJA1 inhibitor (116-9e) in castration-resistant prostate cancer cell (CRPC) and spheroid models. Taken together, these results confirm that DNAJA1 is a hub for anticancer drug resistance and that DNAJA1 inhibition is a potent strategy to sensitize cancer cells to current and future therapeutics. The large change in drug efficacy linked to DNAJA1 suggests a personalized medicine approach where tumor DNAJA1 status may be used to optimize therapeutic strategy.