Cargando…

D-graph clusters flaviviruses and β-coronaviruses according to their hosts, disease type and human cell receptors

MOTIVATION: There is a need for rapid and easy to use, alignment free methods to cluster large groups of protein sequence data. Commonly used phylogenetic trees based on alignments can be used to visualize only a limited number of protein sequences. DGraph, introduced here, is a dynamic programming...

Descripción completa

Detalles Bibliográficos
Autores principales: Braun, Benjamin A., Schein, Catherine H., Braun, Werner
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430575/
https://www.ncbi.nlm.nih.gov/pubmed/32817945
http://dx.doi.org/10.1101/2020.08.13.249649
Descripción
Sumario:MOTIVATION: There is a need for rapid and easy to use, alignment free methods to cluster large groups of protein sequence data. Commonly used phylogenetic trees based on alignments can be used to visualize only a limited number of protein sequences. DGraph, introduced here, is a dynamic programming application developed to generate 2D-maps based on similarity scores for sequences. The program automatically calculates and graphically displays property distance (PD) scores based on physico-chemical property (PCP) similarities from an unaligned list of FASTA files. Such “PD-graphs” show the interrelatedness of the sequences, whereby clusters can reveal deeper connectivities. RESULTS: PD-Graphs generated for flavivirus (FV), enterovirus (EV), and coronavirus (CoV) sequences from complete polyproteins or individual proteins are consistent with biological data on vector types, hosts, cellular receptors and disease phenotypes. PD-graphs separate the tick- from the mosquito-borne FV, clusters viruses that infect bats, camels, seabirds and humans separately and the clusters correlate with disease phenotype. The PD method segregates the β-CoV spike proteins of SARS, SARS-CoV-2, and MERS sequences from other human pathogenic CoV, with clustering consistent with cellular receptor usage. The graphs also suggest evolutionary relationships that may be difficult to determine with conventional bootstrapping methods that require postulating an ancestral sequence.