Cargando…
Roles of N6-Methyladenosine (m(6)A) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals
N6-methyladenosine (m(6)A) is one of the most abundant internal mRNA modifications, and it affects multiple biological processes related to eukaryotic mRNA. The majority of m(6)A sites are located in stop codons and 3′UTR regions of mRNAs. m(6)A regulates RNA metabolism, including alternative splici...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431753/ https://www.ncbi.nlm.nih.gov/pubmed/32850871 http://dx.doi.org/10.3389/fcell.2020.00782 |
Sumario: | N6-methyladenosine (m(6)A) is one of the most abundant internal mRNA modifications, and it affects multiple biological processes related to eukaryotic mRNA. The majority of m(6)A sites are located in stop codons and 3′UTR regions of mRNAs. m(6)A regulates RNA metabolism, including alternative splicing (AS), alternative polyadenylation (APA), mRNA export, decay, stabilization, and translation. The m(6)A metabolic pathway is regulated by a series of m(6)A writers, erasers and readers. Recent studies indicate that m(6)A is essential for the regulation of gene expression, tumor formation, stem cell fate, gametogenesis, and animal development. In this systematic review, we summarized the recent advances in newly identified m(6)A effectors and the effects of m(6)A on RNA metabolism. Subsequently, we reviewed the functional roles of RNA m(6)A modification in diverse cellular bioprocesses, such as stem cell fate decisions, cell reprogramming and early embryonic development, and we discussed the potential of m(6)A modification to be applied to regenerative medicine, disease treatment, organ transplantation, and animal reproduction. |
---|