Cargando…

Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed...

Descripción completa

Detalles Bibliográficos
Autores principales: M. Feyen, Dries A., McKeithan, Wesley L., N. Bruyneel, Arne A., Spiering, Sean, Hörmann, Larissa, Ulmer, Bärbel, Zhang, Hui, Briganti, Francesca, Schweizer, Michaela, Hegyi, Bence, Liao, Zhandi, Pölönen, Risto-Pekka, Ginsburg, Kenneth S., Lam, Chi Keung, Serrano, Ricardo, Wahlquist, Christine, Kreymerman, Alexander, Vu, Michelle, Amatya, Prashila L., Behrens, Charlotta S., Ranjbarvaziri, Sara, C. Maas, Renee G., Greenhaw, Matthew, Bernstein, Daniel, Wu, Joseph C., Bers, Donald M., Eschenhagen, Thomas, Metallo, Christian M., Mercola, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437654/
https://www.ncbi.nlm.nih.gov/pubmed/32697997
http://dx.doi.org/10.1016/j.celrep.2020.107925
_version_ 1783572665808715776
author M. Feyen, Dries A.
McKeithan, Wesley L.
N. Bruyneel, Arne A.
Spiering, Sean
Hörmann, Larissa
Ulmer, Bärbel
Zhang, Hui
Briganti, Francesca
Schweizer, Michaela
Hegyi, Bence
Liao, Zhandi
Pölönen, Risto-Pekka
Ginsburg, Kenneth S.
Lam, Chi Keung
Serrano, Ricardo
Wahlquist, Christine
Kreymerman, Alexander
Vu, Michelle
Amatya, Prashila L.
Behrens, Charlotta S.
Ranjbarvaziri, Sara
C. Maas, Renee G.
Greenhaw, Matthew
Bernstein, Daniel
Wu, Joseph C.
Bers, Donald M.
Eschenhagen, Thomas
Metallo, Christian M.
Mercola, Mark
author_facet M. Feyen, Dries A.
McKeithan, Wesley L.
N. Bruyneel, Arne A.
Spiering, Sean
Hörmann, Larissa
Ulmer, Bärbel
Zhang, Hui
Briganti, Francesca
Schweizer, Michaela
Hegyi, Bence
Liao, Zhandi
Pölönen, Risto-Pekka
Ginsburg, Kenneth S.
Lam, Chi Keung
Serrano, Ricardo
Wahlquist, Christine
Kreymerman, Alexander
Vu, Michelle
Amatya, Prashila L.
Behrens, Charlotta S.
Ranjbarvaziri, Sara
C. Maas, Renee G.
Greenhaw, Matthew
Bernstein, Daniel
Wu, Joseph C.
Bers, Donald M.
Eschenhagen, Thomas
Metallo, Christian M.
Mercola, Mark
author_sort M. Feyen, Dries A.
collection PubMed
description Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na(+)) channels and sarcoplasmic reticulum calcium (Ca(2+)) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na(+) channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models.
format Online
Article
Text
id pubmed-7437654
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-74376542020-08-19 Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes M. Feyen, Dries A. McKeithan, Wesley L. N. Bruyneel, Arne A. Spiering, Sean Hörmann, Larissa Ulmer, Bärbel Zhang, Hui Briganti, Francesca Schweizer, Michaela Hegyi, Bence Liao, Zhandi Pölönen, Risto-Pekka Ginsburg, Kenneth S. Lam, Chi Keung Serrano, Ricardo Wahlquist, Christine Kreymerman, Alexander Vu, Michelle Amatya, Prashila L. Behrens, Charlotta S. Ranjbarvaziri, Sara C. Maas, Renee G. Greenhaw, Matthew Bernstein, Daniel Wu, Joseph C. Bers, Donald M. Eschenhagen, Thomas Metallo, Christian M. Mercola, Mark Cell Rep Article Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na(+)) channels and sarcoplasmic reticulum calcium (Ca(2+)) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na(+) channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models. 2020-07-21 /pmc/articles/PMC7437654/ /pubmed/32697997 http://dx.doi.org/10.1016/j.celrep.2020.107925 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
M. Feyen, Dries A.
McKeithan, Wesley L.
N. Bruyneel, Arne A.
Spiering, Sean
Hörmann, Larissa
Ulmer, Bärbel
Zhang, Hui
Briganti, Francesca
Schweizer, Michaela
Hegyi, Bence
Liao, Zhandi
Pölönen, Risto-Pekka
Ginsburg, Kenneth S.
Lam, Chi Keung
Serrano, Ricardo
Wahlquist, Christine
Kreymerman, Alexander
Vu, Michelle
Amatya, Prashila L.
Behrens, Charlotta S.
Ranjbarvaziri, Sara
C. Maas, Renee G.
Greenhaw, Matthew
Bernstein, Daniel
Wu, Joseph C.
Bers, Donald M.
Eschenhagen, Thomas
Metallo, Christian M.
Mercola, Mark
Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
title Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
title_full Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
title_fullStr Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
title_full_unstemmed Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
title_short Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes
title_sort metabolic maturation media improve physiological function of human ipsc-derived cardiomyocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437654/
https://www.ncbi.nlm.nih.gov/pubmed/32697997
http://dx.doi.org/10.1016/j.celrep.2020.107925
work_keys_str_mv AT mfeyendriesa metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT mckeithanwesleyl metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT nbruyneelarnea metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT spieringsean metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT hormannlarissa metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT ulmerbarbel metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT zhanghui metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT brigantifrancesca metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT schweizermichaela metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT hegyibence metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT liaozhandi metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT polonenristopekka metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT ginsburgkenneths metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT lamchikeung metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT serranoricardo metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT wahlquistchristine metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT kreymermanalexander metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT vumichelle metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT amatyaprashilal metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT behrenscharlottas metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT ranjbarvazirisara metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT cmaasreneeg metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT greenhawmatthew metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT bernsteindaniel metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT wujosephc metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT bersdonaldm metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT eschenhagenthomas metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT metallochristianm metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes
AT mercolamark metabolicmaturationmediaimprovephysiologicalfunctionofhumanipscderivedcardiomyocytes