Cargando…

Actomyosin contractility confers mechanoprotection against TNFα-induced disruption of the intervertebral disc

Inflammation triggers degradation of intervertebral disc extracellular matrix (ECM), a hallmark of disc degeneration that contributes to back pain. Mechanosensitive nucleus pulposus cells are responsible for ECM production, yet the impact of a proinflammatory microenvironment on cell mechanobiology...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez, Paula A., Jacobsen, Timothy D., Chahine, Nadeen O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438088/
https://www.ncbi.nlm.nih.gov/pubmed/32875103
http://dx.doi.org/10.1126/sciadv.aba2368
Descripción
Sumario:Inflammation triggers degradation of intervertebral disc extracellular matrix (ECM), a hallmark of disc degeneration that contributes to back pain. Mechanosensitive nucleus pulposus cells are responsible for ECM production, yet the impact of a proinflammatory microenvironment on cell mechanobiology is unknown. Using gain- and loss-of-function approaches, we show that tumor necrosis factor–α (TNFα)–induced inflammation alters cell morphology and biophysical properties (circularity, contractility, cell stiffness, and hydraulic permeability) in a mechanism dependent on actomyosin contractility in a three-dimensional (3D) culture. We found that RhoA activation rescued cells from TNFα-induced mechanobiological disruption. Using a novel explant-in-hydrogel culture system, we demonstrate that nuclear factor kappa-B nuclear translocation and transcription are mechanosensitive, and its downstream effects on ECM degradation are regulated by actomyosin contractility. Results define a scaling relationship between circularity, contractility, and hydraulic permeability that is conserved from healthy to inflammatory microenvironments and is indicative of cell mechanobiological control across scales in 3D.