Cargando…

A positive, growth-based PAM screen identifies noncanonical motifs recognized by the S. pyogenes Cas9

CRISPR technologies have overwhelmingly relied on the Streptococcus pyogenes Cas9 (SpyCas9), with its consensus NGG and less preferred NAG and NGA protospacer-adjacent motifs (PAMs). Here, we report that SpyCas9 also recognizes sequences within an N(A/C/T)GG motif. These sequences were identified on...

Descripción completa

Detalles Bibliográficos
Autores principales: Collias, D., Leenay, R. T., Slotkowski, R. A., Zuo, Z., Collins, S. P., McGirr, B. A., Liu, J., Beisel, C. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439565/
https://www.ncbi.nlm.nih.gov/pubmed/32832642
http://dx.doi.org/10.1126/sciadv.abb4054
Descripción
Sumario:CRISPR technologies have overwhelmingly relied on the Streptococcus pyogenes Cas9 (SpyCas9), with its consensus NGG and less preferred NAG and NGA protospacer-adjacent motifs (PAMs). Here, we report that SpyCas9 also recognizes sequences within an N(A/C/T)GG motif. These sequences were identified on the basis of preferential enrichment in a growth-based screen in Escherichia coli. DNA binding, cleavage, and editing assays in bacteria and human cells validated recognition, with activities paralleling those for NAG(A/C/T) PAMs and dependent on the first two PAM positions. Molecular-dynamics simulations and plasmid-clearance assays with mismatch-intolerant variants supported induced-fit recognition of an extended PAM by SpyCas9 rather than recognition of NGG with a bulged R-loop. Last, the editing location for SpyCas9-derived base editors could be shifted by one nucleotide by selecting between (C/T)GG and adjacent N(C/T)GG PAMs. SpyCas9 and its enhanced variants thus recognize a larger repertoire of PAMs, with implications for precise editing, off-target predictions, and CRISPR-based immunity.