Cargando…
Nanoelectromechanical Position-Sensitive Detector with Picometer Resolution
[Image: see text] Subnanometer displacement detection lays the solid foundation for critical applications in modern metrology. In-plane displacement sensing, however, is mainly dominated by the detection of differential photocurrent signals from photodiodes, with resolution in the nanometer range. H...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441496/ https://www.ncbi.nlm.nih.gov/pubmed/32851117 http://dx.doi.org/10.1021/acsphotonics.0c00701 |
Sumario: | [Image: see text] Subnanometer displacement detection lays the solid foundation for critical applications in modern metrology. In-plane displacement sensing, however, is mainly dominated by the detection of differential photocurrent signals from photodiodes, with resolution in the nanometer range. Here, we present an integrated nanoelectromechanical in-plane displacement sensor based on a nanoelectromechanical trampoline resonator. With a position resolution of 4 pm/[Image: see text] for a low laser power of 85 μW and a repeatability of 2 nm after five cycles of operation as well as good long-term stability, this new detection principle provides a reliable alternative for overcoming the current position detection limit in a wide variety of research and application fields. |
---|