Cargando…
Machine learning for RNA sequencing-based intrinsic subtyping of breast cancer
Stratification of breast cancer (BC) into molecular subtypes by multigene expression assays is of demonstrated clinical utility. In principle, global RNA-sequencing (RNA-seq) should enable reconstructing existing transcriptional classifications of BC samples. Yet, it is not clear whether adaptation...
Autores principales: | Cascianelli, Silvia, Molineris, Ivan, Isella, Claudio, Masseroli, Marco, Medico, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442834/ https://www.ncbi.nlm.nih.gov/pubmed/32826944 http://dx.doi.org/10.1038/s41598-020-70832-2 |
Ejemplares similares
-
Multi-label transcriptional classification of colorectal cancer reflects tumor cell population heterogeneity
por: Cascianelli, Silvia, et al.
Publicado: (2023) -
MicroRNA–mRNA interactions underlying colorectal cancer molecular subtypes
por: Cantini, Laura, et al.
Publicado: (2015) -
RGMQL: scalable and interoperable computing of heterogeneous omics big data and metadata in R/Bioconductor
por: Pallotta, Simone, et al.
Publicado: (2022) -
Identification of transcription factor high accumulation DNA zones
por: Cascianelli, Silvia, et al.
Publicado: (2023) -
Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer
por: Isella, Claudio, et al.
Publicado: (2017)