Cargando…
Effect of combined extracts of aged garlic, ginger, and chili peppers on cognitive performance and brain antioxidant markers in Aβ-induced rats
A combination of aged garlic, ginger, and chili peppers extracts (AGC) was studied by high-performance liquid chromatography, 2,2-diphenyl-1-picrylhydrazyl, and ferric-reducing antioxidant assays, and oxidative stress markers were analyzed in Aβ1-42-induced rats. The AGC was orally administered to W...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Association for Laboratory Animal Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445057/ https://www.ncbi.nlm.nih.gov/pubmed/32051390 http://dx.doi.org/10.1538/expanim.19-0123 |
Sumario: | A combination of aged garlic, ginger, and chili peppers extracts (AGC) was studied by high-performance liquid chromatography, 2,2-diphenyl-1-picrylhydrazyl, and ferric-reducing antioxidant assays, and oxidative stress markers were analyzed in Aβ1-42-induced rats. The AGC was orally administered to Wistar rats at doses of 125, 250, and 500 mg/kg body weight (AGC125, AGC250, AGC500, respectively) for 64 days. At day 56, Aβ1-42 was injected via both sides of the lateral ventricles. The effects of the AGC on spatial and recognition memory were examined using a Morris water maze and novel object recognition tasks. Rats induced with Aβ1-42 exhibited obvious cognitive deficits, as demonstrated by their increased escape latency time (ET) and decreased retention time (RT) and percentage of discriminative index (DI). When compared with the control group, all AGC-treated rats showed significantly shorter ETs and higher DIs during the 5-min delay testing phase. Rats treated with AGC250 also had significantly longer RTs. Administration of Aβ1-42 significantly increased malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels in the rat brain homogenate. Pretreatment with the AGC caused significant increases in SOD, GPx, and CAT activities, as well as a significant decrease in MDA in the rat brain homogenates after Aβ-induced neurotoxicity. Our results suggested that an AGC may ameliorate cognitive dysfunction in Aβ-treated rats due to its role in the upregulation of SOD, GPx, and CAT. |
---|