Cargando…
Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms
The gene regulatory network (GRN) of human cells encodes mechanisms to ensure proper functioning. However, if this GRN is dysregulated, the cell may enter into a disease state such as cancer. Understanding the GRN as a system can therefore help identify novel mechanisms underlying disease, which can...
Autores principales: | Morgan, Daniel, Studham, Matthew, Tjärnberg, Andreas, Weishaupt, Holger, Swartling, Fredrik J., Nordling, Torbjörn E. M., Sonnhammer, Erik L. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447758/ https://www.ncbi.nlm.nih.gov/pubmed/32843692 http://dx.doi.org/10.1038/s41598-020-70941-y |
Ejemplares similares
-
Functional association networks as priors for gene regulatory network inference
por: Studham, Matthew E., et al.
Publicado: (2014) -
Knowledge of the perturbation design is essential for accurate gene regulatory network inference
por: Seçilmiş, Deniz, et al.
Publicado: (2022) -
Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data
por: Seçilmiş, Deniz, et al.
Publicado: (2020) -
Inferring the experimental design for accurate gene regulatory network inference
por: Seçilmiş, Deniz, et al.
Publicado: (2021) -
Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference
por: Seçilmiş, Deniz, et al.
Publicado: (2022)