Cargando…

Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits

Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity...

Descripción completa

Detalles Bibliográficos
Autores principales: Glastonbury, Craig A., Pulit, Sara L., Honecker, Julius, Censin, Jenny C., Laber, Samantha, Yaghootkar, Hanieh, Rahmioglu, Nilufer, Pastel, Emilie, Kos, Katerina, Pitt, Andrew, Hudson, Michelle, Nellåker, Christoffer, Beer, Nicola L., Hauner, Hans, Becker, Christian M., Zondervan, Krina T., Frayling, Timothy M., Claussnitzer, Melina, Lindgren, Cecilia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449405/
https://www.ncbi.nlm.nih.gov/pubmed/32797044
http://dx.doi.org/10.1371/journal.pcbi.1008044
_version_ 1783574633685975040
author Glastonbury, Craig A.
Pulit, Sara L.
Honecker, Julius
Censin, Jenny C.
Laber, Samantha
Yaghootkar, Hanieh
Rahmioglu, Nilufer
Pastel, Emilie
Kos, Katerina
Pitt, Andrew
Hudson, Michelle
Nellåker, Christoffer
Beer, Nicola L.
Hauner, Hans
Becker, Christian M.
Zondervan, Krina T.
Frayling, Timothy M.
Claussnitzer, Melina
Lindgren, Cecilia M.
author_facet Glastonbury, Craig A.
Pulit, Sara L.
Honecker, Julius
Censin, Jenny C.
Laber, Samantha
Yaghootkar, Hanieh
Rahmioglu, Nilufer
Pastel, Emilie
Kos, Katerina
Pitt, Andrew
Hudson, Michelle
Nellåker, Christoffer
Beer, Nicola L.
Hauner, Hans
Becker, Christian M.
Zondervan, Krina T.
Frayling, Timothy M.
Claussnitzer, Melina
Lindgren, Cecilia M.
author_sort Glastonbury, Craig A.
collection PubMed
description Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R(2)(visceral) = 0.94, P < 2.2 × 10(−16), R(2)(subcutaneous) = 0.91, P < 2.2 × 10(−16)), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that mean adipocyte area positively correlated with body mass index (BMI) (P(subq) = 8.13 × 10(−69), β(subq) = 0.45; P(visc) = 2.5 × 10(−55), β(visc) = 0.49; average R(2) across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (P(meta) = 9.8 × 10(−7)). Lastly, we performed the largest GWAS and subsequent meta-analysis of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations.
format Online
Article
Text
id pubmed-7449405
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-74494052020-09-02 Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits Glastonbury, Craig A. Pulit, Sara L. Honecker, Julius Censin, Jenny C. Laber, Samantha Yaghootkar, Hanieh Rahmioglu, Nilufer Pastel, Emilie Kos, Katerina Pitt, Andrew Hudson, Michelle Nellåker, Christoffer Beer, Nicola L. Hauner, Hans Becker, Christian M. Zondervan, Krina T. Frayling, Timothy M. Claussnitzer, Melina Lindgren, Cecilia M. PLoS Comput Biol Research Article Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R(2)(visceral) = 0.94, P < 2.2 × 10(−16), R(2)(subcutaneous) = 0.91, P < 2.2 × 10(−16)), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that mean adipocyte area positively correlated with body mass index (BMI) (P(subq) = 8.13 × 10(−69), β(subq) = 0.45; P(visc) = 2.5 × 10(−55), β(visc) = 0.49; average R(2) across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (P(meta) = 9.8 × 10(−7)). Lastly, we performed the largest GWAS and subsequent meta-analysis of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations. Public Library of Science 2020-08-14 /pmc/articles/PMC7449405/ /pubmed/32797044 http://dx.doi.org/10.1371/journal.pcbi.1008044 Text en © 2020 Glastonbury et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Glastonbury, Craig A.
Pulit, Sara L.
Honecker, Julius
Censin, Jenny C.
Laber, Samantha
Yaghootkar, Hanieh
Rahmioglu, Nilufer
Pastel, Emilie
Kos, Katerina
Pitt, Andrew
Hudson, Michelle
Nellåker, Christoffer
Beer, Nicola L.
Hauner, Hans
Becker, Christian M.
Zondervan, Krina T.
Frayling, Timothy M.
Claussnitzer, Melina
Lindgren, Cecilia M.
Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
title Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
title_full Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
title_fullStr Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
title_full_unstemmed Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
title_short Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
title_sort machine learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449405/
https://www.ncbi.nlm.nih.gov/pubmed/32797044
http://dx.doi.org/10.1371/journal.pcbi.1008044
work_keys_str_mv AT glastonburycraiga machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT pulitsaral machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT honeckerjulius machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT censinjennyc machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT labersamantha machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT yaghootkarhanieh machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT rahmioglunilufer machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT pastelemilie machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT koskaterina machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT pittandrew machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT hudsonmichelle machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT nellakerchristoffer machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT beernicolal machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT haunerhans machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT beckerchristianm machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT zondervankrinat machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT fraylingtimothym machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT claussnitzermelina machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits
AT lindgrenceciliam machinelearningbasedhistologyphenotypingtoinvestigatetheepidemiologicandgeneticbasisofadipocytemorphologyandcardiometabolictraits