Cargando…

Drug screening model meets cancer organoid technology

Tumor organoids inherit the genomic and molecular characteristics of the donor tumor, which not only bridge the gap between genome and phenotype but also circumvent the disadvantages such as genetic information change by using 2D cell lines and the mouse-specific tumor evolution in patient-derived x...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chen, Qin, Tianyu, Huang, Yuhan, Li, Yuan, Chen, Gang, Sun, Chaoyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451679/
https://www.ncbi.nlm.nih.gov/pubmed/32822897
http://dx.doi.org/10.1016/j.tranon.2020.100840
Descripción
Sumario:Tumor organoids inherit the genomic and molecular characteristics of the donor tumor, which not only bridge the gap between genome and phenotype but also circumvent the disadvantages such as genetic information change by using 2D cell lines and the mouse-specific tumor evolution in patient-derived xenograft (PDX). So, cancer organoid has been widely applied to preclinical drug evaluation, biomarker identification, biological research, and individualized therapy. Besides, cancer organoid can be preserved, resuscitated, passed infinitely, and mechanically cultured on a chip for drug screening; it has become one of the partial models for low/high-throughput drug screening in the preclinical trial in vitro. Therefore, this review presents the recent developments of tumor organoids for drug screening, which will introduce from four aspects, including the stability/credibility, types, application, deficiency and prospect of the tumor organoids model for drug screening.