Cargando…
Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors
It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)–activated split-Cas9 (FAST) system that can robustly in...
Autores principales: | Yu, Yuanhuan, Wu, Xin, Guan, Ningzi, Shao, Jiawei, Li, Huiying, Chen, Yuxuan, Ping, Yuan, Li, Dali, Ye, Haifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455487/ https://www.ncbi.nlm.nih.gov/pubmed/32923591 http://dx.doi.org/10.1126/sciadv.abb1777 |
Ejemplares similares
-
A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice
por: Wu, Jiali, et al.
Publicado: (2020) -
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation
por: Shao, Jiawei, et al.
Publicado: (2018) -
A far-red light–inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation
por: Wang, Xinyi, et al.
Publicado: (2021) -
Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology
por: Guan, Ningzi, et al.
Publicado: (2022) -
Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
por: Zhang, Song, et al.
Publicado: (2021)