Cargando…
P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation
The subthreshold, transient A-type K(+) current is a vital regulator of the excitability of neurons throughout the brain. In mammalian hippocampal pyramidal neurons, this current is carried primarily by ion channels comprising Kv4.2 α-subunits. These channels occupy the somatodendritic domains of th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460594/ https://www.ncbi.nlm.nih.gov/pubmed/32824677 http://dx.doi.org/10.3390/ijms21165921 |
_version_ | 1783576638351474688 |
---|---|
author | Hu, Jia-hua Malloy, Cole Hoffman, Dax A. |
author_facet | Hu, Jia-hua Malloy, Cole Hoffman, Dax A. |
author_sort | Hu, Jia-hua |
collection | PubMed |
description | The subthreshold, transient A-type K(+) current is a vital regulator of the excitability of neurons throughout the brain. In mammalian hippocampal pyramidal neurons, this current is carried primarily by ion channels comprising Kv4.2 α-subunits. These channels occupy the somatodendritic domains of these principle excitatory neurons and thus regulate membrane voltage relevant to the input–output efficacy of these cells. Owing to their robust control of membrane excitability and ubiquitous expression in the hippocampus, their dysfunction can alter network stability in a manner that manifests in recurrent seizures. Indeed, growing evidence implicates these channels in intractable epilepsies of the temporal lobe, which underscores the importance of determining the molecular mechanisms underlying their regulation and contribution to pathologies. Here, we describe the role of p38 kinase phosphorylation of a C-terminal motif in Kv4.2 in modulating hippocampal neuronal excitability and behavioral seizure strength. Using a combination of biochemical, single-cell electrophysiology, and in vivo seizure techniques, we show that kainic acid-induced seizure induces p38-mediated phosphorylation of Thr607 in Kv4.2 in a time-dependent manner. The pharmacological and genetic disruption of this process reduces neuronal excitability and dampens seizure intensity, illuminating a cellular cascade that may be targeted for therapeutic intervention to mitigate seizure intensity and progression. |
format | Online Article Text |
id | pubmed-7460594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74605942020-09-03 P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation Hu, Jia-hua Malloy, Cole Hoffman, Dax A. Int J Mol Sci Article The subthreshold, transient A-type K(+) current is a vital regulator of the excitability of neurons throughout the brain. In mammalian hippocampal pyramidal neurons, this current is carried primarily by ion channels comprising Kv4.2 α-subunits. These channels occupy the somatodendritic domains of these principle excitatory neurons and thus regulate membrane voltage relevant to the input–output efficacy of these cells. Owing to their robust control of membrane excitability and ubiquitous expression in the hippocampus, their dysfunction can alter network stability in a manner that manifests in recurrent seizures. Indeed, growing evidence implicates these channels in intractable epilepsies of the temporal lobe, which underscores the importance of determining the molecular mechanisms underlying their regulation and contribution to pathologies. Here, we describe the role of p38 kinase phosphorylation of a C-terminal motif in Kv4.2 in modulating hippocampal neuronal excitability and behavioral seizure strength. Using a combination of biochemical, single-cell electrophysiology, and in vivo seizure techniques, we show that kainic acid-induced seizure induces p38-mediated phosphorylation of Thr607 in Kv4.2 in a time-dependent manner. The pharmacological and genetic disruption of this process reduces neuronal excitability and dampens seizure intensity, illuminating a cellular cascade that may be targeted for therapeutic intervention to mitigate seizure intensity and progression. MDPI 2020-08-18 /pmc/articles/PMC7460594/ /pubmed/32824677 http://dx.doi.org/10.3390/ijms21165921 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Jia-hua Malloy, Cole Hoffman, Dax A. P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation |
title | P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation |
title_full | P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation |
title_fullStr | P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation |
title_full_unstemmed | P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation |
title_short | P38 Regulates Kainic Acid-Induced Seizure and Neuronal Firing via Kv4.2 Phosphorylation |
title_sort | p38 regulates kainic acid-induced seizure and neuronal firing via kv4.2 phosphorylation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460594/ https://www.ncbi.nlm.nih.gov/pubmed/32824677 http://dx.doi.org/10.3390/ijms21165921 |
work_keys_str_mv | AT hujiahua p38regulateskainicacidinducedseizureandneuronalfiringviakv42phosphorylation AT malloycole p38regulateskainicacidinducedseizureandneuronalfiringviakv42phosphorylation AT hoffmandaxa p38regulateskainicacidinducedseizureandneuronalfiringviakv42phosphorylation |