Cargando…

NF-κB-dependent Mechanism of Action of c-Myc Inhibitor 10058-F4: Highlighting a Promising Effect of c-Myc Inhibition in Leukemia Cells, Irrespective of p53 Status

Due to the frequent contribution in the pathogenesis of different human malignancies, c-Myc is among those transcription factors that are believed to be pharmacologically targeted for cancer therapeutic approaches. In the present study, we examined the anti-leukemic effect of a well-known c-Myc inhi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sayyadi, Mohammad, Safaroghli-Azar, Ava, Safa, Majid, Abolghasemi, Hassan, Momeny, Majid, Bashash, Davood
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462502/
https://www.ncbi.nlm.nih.gov/pubmed/32922477
http://dx.doi.org/10.22037/ijpr.2020.112926.14018
Descripción
Sumario:Due to the frequent contribution in the pathogenesis of different human malignancies, c-Myc is among those transcription factors that are believed to be pharmacologically targeted for cancer therapeutic approaches. In the present study, we examined the anti-leukemic effect of a well-known c-Myc inhibitor 10058-F4 on a panel of hematologic malignant cells harboring either mutant or wild-type p53. Notably, we found that the suppression of c-Myc was coupled with the reduction in the survival of all the tested leukemic cells; however, as far as we are aware, this study suggests for the first time that the cytotoxic effect of 10058-F4 was not significantly affected by the molecular status of p53. Delving into the molecular mechanisms of the inhibitor in the most sensitive cell line revealed that 10058-F4 could induce apoptotic cell death in mutant p53-expressing NB4 cells through the suppression of NF-κB pathway coupled with a significant induction of intracellular reactive oxygen species (ROS). In addition, we found that the anti-leukemic effect of 10058-F4 was overshadowed, at least partially, through the compensatory activation of the PI3K signaling pathway; highlighting a plausible attenuating role of this axis on 10058-F4 cytotoxicity. In conclusion, the results of the present study shed light on the favorable anti-leukemic effect of 10058-F4, especially in combination with PI3K inhibitors in acute promyelocytic leukemia; however, further investigations should be accomplished to determine the efficacy of the inhibitor, either as a single agent or in a combined-modal strategy, in leukemia treatment.