Cargando…
Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model
A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463909/ https://www.ncbi.nlm.nih.gov/pubmed/32722310 http://dx.doi.org/10.3390/antiox9080662 |
_version_ | 1783577242449739776 |
---|---|
author | Savyuk, Maria Krivonosov, Mikhail Mishchenko, Tatiana Gazaryan, Irina Ivanchenko, Mikhail Khristichenko, Anna Poloznikov, Andrey Hushpulian, Dmitry Nikulin, Sergey Tonevitsky, Evgeny Abuzarova, Guzal Mitroshina, Elena Vedunova, Maria |
author_facet | Savyuk, Maria Krivonosov, Mikhail Mishchenko, Tatiana Gazaryan, Irina Ivanchenko, Mikhail Khristichenko, Anna Poloznikov, Andrey Hushpulian, Dmitry Nikulin, Sergey Tonevitsky, Evgeny Abuzarova, Guzal Mitroshina, Elena Vedunova, Maria |
author_sort | Savyuk, Maria |
collection | PubMed |
description | A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μM and 15 μM neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μM, but not for 1 μM neuradapt. Network connectivity is better preserved with immediate treatment using 1 μM neuradapt than with 15 μM, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μM and functional activity at 15 μM. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells. |
format | Online Article Text |
id | pubmed-7463909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74639092020-09-04 Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model Savyuk, Maria Krivonosov, Mikhail Mishchenko, Tatiana Gazaryan, Irina Ivanchenko, Mikhail Khristichenko, Anna Poloznikov, Andrey Hushpulian, Dmitry Nikulin, Sergey Tonevitsky, Evgeny Abuzarova, Guzal Mitroshina, Elena Vedunova, Maria Antioxidants (Basel) Article A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μM and 15 μM neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μM, but not for 1 μM neuradapt. Network connectivity is better preserved with immediate treatment using 1 μM neuradapt than with 15 μM, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μM and functional activity at 15 μM. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells. MDPI 2020-07-24 /pmc/articles/PMC7463909/ /pubmed/32722310 http://dx.doi.org/10.3390/antiox9080662 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Savyuk, Maria Krivonosov, Mikhail Mishchenko, Tatiana Gazaryan, Irina Ivanchenko, Mikhail Khristichenko, Anna Poloznikov, Andrey Hushpulian, Dmitry Nikulin, Sergey Tonevitsky, Evgeny Abuzarova, Guzal Mitroshina, Elena Vedunova, Maria Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model |
title | Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model |
title_full | Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model |
title_fullStr | Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model |
title_full_unstemmed | Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model |
title_short | Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model |
title_sort | neuroprotective effect of hif prolyl hydroxylase inhibition in an in vitro hypoxia model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463909/ https://www.ncbi.nlm.nih.gov/pubmed/32722310 http://dx.doi.org/10.3390/antiox9080662 |
work_keys_str_mv | AT savyukmaria neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT krivonosovmikhail neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT mishchenkotatiana neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT gazaryanirina neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT ivanchenkomikhail neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT khristichenkoanna neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT poloznikovandrey neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT hushpuliandmitry neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT nikulinsergey neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT tonevitskyevgeny neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT abuzarovaguzal neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT mitroshinaelena neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel AT vedunovamaria neuroprotectiveeffectofhifprolylhydroxylaseinhibitioninaninvitrohypoxiamodel |