Cargando…
A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data
DNA methylation change has been useful for cancer biomarker discovery, classification, and potential treatment development. So far, existing methods use either differentially methylated CpG sites or combined CpG sites, namely differentially methylated regions, that can be mapped to genes. However, s...
Autores principales: | Mallik, Saurav, Seth, Soumita, Bhadra, Tapas, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465138/ https://www.ncbi.nlm.nih.gov/pubmed/32806782 http://dx.doi.org/10.3390/genes11080931 |
Ejemplares similares
-
Dimensionality Reduction and Louvain Agglomerative Hierarchical Clustering for Cluster-Specified Frequent Biomarker Discovery in Single-Cell Sequencing Data
por: Seth , Soumita, et al.
Publicado: (2022) -
Optimal ranking and directional signature classification using the integral strategy of multi-objective optimization-based association rule mining of multi-omics data
por: Mallik, Saurav, et al.
Publicado: (2023) -
Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer
por: Bhadra, Tapas, et al.
Publicado: (2022) -
A Deep Learning–Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes
por: Munquad, Sana, et al.
Publicado: (2022) -
Editorial: Deep learning for disease prediction in next-generation sequencing and biomedical imaging data
por: Mallik, Saurav, et al.
Publicado: (2023)