Cargando…

A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies

The research work was designed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox (DFX). According to the solubility studies of DFX in different components, Peceol, Kolliphor EL, and Transcutol were selected as excipients. Pseudo-ternary phase diagrams were constr...

Descripción completa

Detalles Bibliográficos
Autores principales: Alghananim, Alaa, Özalp, Yıldız, Mesut, Burcu, Serakinci, Nedime, Özsoy, Yıldız, Güngör, Sevgi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465256/
https://www.ncbi.nlm.nih.gov/pubmed/32722238
http://dx.doi.org/10.3390/ph13080162
_version_ 1783577548093915136
author Alghananim, Alaa
Özalp, Yıldız
Mesut, Burcu
Serakinci, Nedime
Özsoy, Yıldız
Güngör, Sevgi
author_facet Alghananim, Alaa
Özalp, Yıldız
Mesut, Burcu
Serakinci, Nedime
Özsoy, Yıldız
Güngör, Sevgi
author_sort Alghananim, Alaa
collection PubMed
description The research work was designed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox (DFX). According to the solubility studies of DFX in different components, Peceol, Kolliphor EL, and Transcutol were selected as excipients. Pseudo-ternary phase diagrams were constructed, and then SNEDDS formation assessment studies and solubility of DFX in selected SNEDDSs formulations were performed. DFX loaded SNEDDS were prepared and characterized. The optimum DFX-SNEDDS formulations were developed. The relative safety of the optimized SNEDDS formulation was examined in a human immortalized myelogenous leukemia cell line, K562 cells, using the MTT cell viability test. Cytotoxicity studies revealed more cell viability (71.44%) of DFX loaded SNEDDS compared to pure DFX (3.99%) at 40 μM. The selected DFX-SNEDDS formulation was converted into S-SNEDDS by adsorbing into porous carriers, in order to study its dissolution behavior. The in vitro drug release studies indicated that DFX release (Q5%) from S-SNEDDS solidified with Neusilin UFL2 was significantly higher (93.6 ± 0.7% within 5 min) compared with the marketed product (81.65 ± 2.10%). The overall results indicated that the S-SNEDDS formulation of DFX could have the potential to enhance the solubility of DFX, which would in turn have the potential to improve its oral bioavailability as a safe novel delivery system.
format Online
Article
Text
id pubmed-7465256
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74652562020-09-04 A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies Alghananim, Alaa Özalp, Yıldız Mesut, Burcu Serakinci, Nedime Özsoy, Yıldız Güngör, Sevgi Pharmaceuticals (Basel) Article The research work was designed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox (DFX). According to the solubility studies of DFX in different components, Peceol, Kolliphor EL, and Transcutol were selected as excipients. Pseudo-ternary phase diagrams were constructed, and then SNEDDS formation assessment studies and solubility of DFX in selected SNEDDSs formulations were performed. DFX loaded SNEDDS were prepared and characterized. The optimum DFX-SNEDDS formulations were developed. The relative safety of the optimized SNEDDS formulation was examined in a human immortalized myelogenous leukemia cell line, K562 cells, using the MTT cell viability test. Cytotoxicity studies revealed more cell viability (71.44%) of DFX loaded SNEDDS compared to pure DFX (3.99%) at 40 μM. The selected DFX-SNEDDS formulation was converted into S-SNEDDS by adsorbing into porous carriers, in order to study its dissolution behavior. The in vitro drug release studies indicated that DFX release (Q5%) from S-SNEDDS solidified with Neusilin UFL2 was significantly higher (93.6 ± 0.7% within 5 min) compared with the marketed product (81.65 ± 2.10%). The overall results indicated that the S-SNEDDS formulation of DFX could have the potential to enhance the solubility of DFX, which would in turn have the potential to improve its oral bioavailability as a safe novel delivery system. MDPI 2020-07-24 /pmc/articles/PMC7465256/ /pubmed/32722238 http://dx.doi.org/10.3390/ph13080162 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alghananim, Alaa
Özalp, Yıldız
Mesut, Burcu
Serakinci, Nedime
Özsoy, Yıldız
Güngör, Sevgi
A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies
title A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies
title_full A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies
title_fullStr A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies
title_full_unstemmed A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies
title_short A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies
title_sort solid ultra fine self-nanoemulsifying drug delivery system (s-snedds) of deferasirox for improved solubility: optimization, characterization, and in vitro cytotoxicity studies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465256/
https://www.ncbi.nlm.nih.gov/pubmed/32722238
http://dx.doi.org/10.3390/ph13080162
work_keys_str_mv AT alghananimalaa asolidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT ozalpyıldız asolidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT mesutburcu asolidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT serakincinedime asolidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT ozsoyyıldız asolidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT gungorsevgi asolidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT alghananimalaa solidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT ozalpyıldız solidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT mesutburcu solidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT serakincinedime solidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT ozsoyyıldız solidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies
AT gungorsevgi solidultrafineselfnanoemulsifyingdrugdeliverysystemssneddsofdeferasiroxforimprovedsolubilityoptimizationcharacterizationandinvitrocytotoxicitystudies