Cargando…
Devices with Tuneable Resistance Switching Characteristics Based on a Multilayer Structure of Graphene Oxide and Egg Albumen
We used graphene oxide (GO) and egg albumen (EA) to fabricate bipolar resistance switching devices with indium tin oxide (ITO)/GO/EA/GO/Aluminum (Al) and ITO/EA/Al structures. The experimental results show that these ITO/GO/EA/GO/Al and ITO/EA/Al bio-memristors exhibit rewritable flash memory charac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466537/ https://www.ncbi.nlm.nih.gov/pubmed/32751364 http://dx.doi.org/10.3390/nano10081491 |
Sumario: | We used graphene oxide (GO) and egg albumen (EA) to fabricate bipolar resistance switching devices with indium tin oxide (ITO)/GO/EA/GO/Aluminum (Al) and ITO/EA/Al structures. The experimental results show that these ITO/GO/EA/GO/Al and ITO/EA/Al bio-memristors exhibit rewritable flash memory characteristics. Comparisons of ITO/GO/EA/GO/Al devices with 0.05 ωt %, 0.5 ωt %, and 2 ωt % GO in the GO layers and the ITO/EA/Al device show that the ON/OFF current ratio of these devices increases as the GO concentration decreases. Among these devices, the highest switching current ratio is 1.87 × 10(3). Moreover, the RESET voltage decreases as the GO concentration decreases, which indicates that GO layers with different GO concentrations can be adopted to adjust the ON/OFF current ratio and the RESET voltage. When the GO concentration is 0.5 ωt %, the device can be switched more than 200 times. The retention times of all the devices are longer than 10(4) s. |
---|