Cargando…

LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy

BACKGROUND: It has been reported that long non-coding RNAs (lncRNAs) play vital roles in diabetic nephropathy (DN). Our study aims to research the function of lncRNA KCNQ1OT1 in DN cells and the molecular mechanism. METHODS: Human glomerular mesangial cells (HGMCs) and human renal glomerular endothe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jie, Ran, Zhu, Pengpeng, Zhong, Jiao, Zhang, Yan, Wu, Hongyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469295/
https://www.ncbi.nlm.nih.gov/pubmed/32905431
http://dx.doi.org/10.1186/s13098-020-00585-5
_version_ 1783578396291235840
author Jie, Ran
Zhu, Pengpeng
Zhong, Jiao
Zhang, Yan
Wu, Hongyan
author_facet Jie, Ran
Zhu, Pengpeng
Zhong, Jiao
Zhang, Yan
Wu, Hongyan
author_sort Jie, Ran
collection PubMed
description BACKGROUND: It has been reported that long non-coding RNAs (lncRNAs) play vital roles in diabetic nephropathy (DN). Our study aims to research the function of lncRNA KCNQ1OT1 in DN cells and the molecular mechanism. METHODS: Human glomerular mesangial cells (HGMCs) and human renal glomerular endothelial cells (HRGECs) were cultured in high glucose (30 mM) condition as models of DN cells. KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and miR-18b-5p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mRNA and protein levels of Sorbin and SH3 domain-containing protein 2 (SORBS2), Type IV collagen (Col-4), fibronectin (FN), transcriptional regulatory factor-beta 1 (TGF-β1), Twist, NF-κB and STAT3 were measured by qRT-PCR and western blot. Cell viability was detected by cell counting kit-8 (CCK-8) assay for selecting the proper concentration of glucose treatment. Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assay were employed to determine cell proliferation and apoptosis, respectively. The targets of KCNQ1OT1 was predicted by online software and confirmed by dual-luciferase reporter assay. RESULTS: KCNQ1OT1 and SORBS2 were elevated in DN. Both knockdown of KCNQ1OT1 and silencing of SORBS2 restrained proliferation and fibrosis and induced apoptosis in DN cells. Besides, Overexpression of SORBS2 restored the KCNQ1OT1 knockdown-mediate effects on proliferation, apoptosis and fibrosis in DN cells. In addition, miR-18b-5p served as a target of KCNQ1OT1 as well as targeted SORBS2. KCNQ1OT1 knockdown repressed NF-ĸB pathway. CONCLUSION: KCNQ1OT1 regulated DN cells proliferation, apoptosis and fibrosis via KCNQ1OT1/miR-18b-5p/SORBS2 axis and NF-ĸB pathway.
format Online
Article
Text
id pubmed-7469295
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-74692952020-09-03 LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy Jie, Ran Zhu, Pengpeng Zhong, Jiao Zhang, Yan Wu, Hongyan Diabetol Metab Syndr Research BACKGROUND: It has been reported that long non-coding RNAs (lncRNAs) play vital roles in diabetic nephropathy (DN). Our study aims to research the function of lncRNA KCNQ1OT1 in DN cells and the molecular mechanism. METHODS: Human glomerular mesangial cells (HGMCs) and human renal glomerular endothelial cells (HRGECs) were cultured in high glucose (30 mM) condition as models of DN cells. KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and miR-18b-5p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mRNA and protein levels of Sorbin and SH3 domain-containing protein 2 (SORBS2), Type IV collagen (Col-4), fibronectin (FN), transcriptional regulatory factor-beta 1 (TGF-β1), Twist, NF-κB and STAT3 were measured by qRT-PCR and western blot. Cell viability was detected by cell counting kit-8 (CCK-8) assay for selecting the proper concentration of glucose treatment. Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assay were employed to determine cell proliferation and apoptosis, respectively. The targets of KCNQ1OT1 was predicted by online software and confirmed by dual-luciferase reporter assay. RESULTS: KCNQ1OT1 and SORBS2 were elevated in DN. Both knockdown of KCNQ1OT1 and silencing of SORBS2 restrained proliferation and fibrosis and induced apoptosis in DN cells. Besides, Overexpression of SORBS2 restored the KCNQ1OT1 knockdown-mediate effects on proliferation, apoptosis and fibrosis in DN cells. In addition, miR-18b-5p served as a target of KCNQ1OT1 as well as targeted SORBS2. KCNQ1OT1 knockdown repressed NF-ĸB pathway. CONCLUSION: KCNQ1OT1 regulated DN cells proliferation, apoptosis and fibrosis via KCNQ1OT1/miR-18b-5p/SORBS2 axis and NF-ĸB pathway. BioMed Central 2020-09-03 /pmc/articles/PMC7469295/ /pubmed/32905431 http://dx.doi.org/10.1186/s13098-020-00585-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Jie, Ran
Zhu, Pengpeng
Zhong, Jiao
Zhang, Yan
Wu, Hongyan
LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy
title LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy
title_full LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy
title_fullStr LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy
title_full_unstemmed LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy
title_short LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy
title_sort lncrna kcnq1ot1 affects cell proliferation, apoptosis and fibrosis through regulating mir-18b-5p/sorbs2 axis and nf-ĸb pathway in diabetic nephropathy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469295/
https://www.ncbi.nlm.nih.gov/pubmed/32905431
http://dx.doi.org/10.1186/s13098-020-00585-5
work_keys_str_mv AT jieran lncrnakcnq1ot1affectscellproliferationapoptosisandfibrosisthroughregulatingmir18b5psorbs2axisandnfĸbpathwayindiabeticnephropathy
AT zhupengpeng lncrnakcnq1ot1affectscellproliferationapoptosisandfibrosisthroughregulatingmir18b5psorbs2axisandnfĸbpathwayindiabeticnephropathy
AT zhongjiao lncrnakcnq1ot1affectscellproliferationapoptosisandfibrosisthroughregulatingmir18b5psorbs2axisandnfĸbpathwayindiabeticnephropathy
AT zhangyan lncrnakcnq1ot1affectscellproliferationapoptosisandfibrosisthroughregulatingmir18b5psorbs2axisandnfĸbpathwayindiabeticnephropathy
AT wuhongyan lncrnakcnq1ot1affectscellproliferationapoptosisandfibrosisthroughregulatingmir18b5psorbs2axisandnfĸbpathwayindiabeticnephropathy