Cargando…
Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway
BACKGROUND: Ankylosing spondylitis (AS) is a common form of inflammatory arthritis. Micheliolide (MCL), a sesquiterpene lactone, is reportedly involved in the alleviation of inflammatory response. This study aimed to investigate the mechanism of MCL in the treatment of AS. METHODS: Mice were randoml...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475468/ https://www.ncbi.nlm.nih.gov/pubmed/32953791 http://dx.doi.org/10.21037/atm-20-4987 |
_version_ | 1783579512158552064 |
---|---|
author | Tian, Zhong-Gu Yao, Miaomiao Chen, Jie |
author_facet | Tian, Zhong-Gu Yao, Miaomiao Chen, Jie |
author_sort | Tian, Zhong-Gu |
collection | PubMed |
description | BACKGROUND: Ankylosing spondylitis (AS) is a common form of inflammatory arthritis. Micheliolide (MCL), a sesquiterpene lactone, is reportedly involved in the alleviation of inflammatory response. This study aimed to investigate the mechanism of MCL in the treatment of AS. METHODS: Mice were randomly divided into five groups: the sham group, the MCL (50 mg/kg) group, the AS model group, the AS + MCL (20 mg/kg) group, and the AS + MCL (50 mg/kg) group. After the addition of the inhibitor celastrol, mice were randomly divided into five groups: the sham group, the AS model group, the AS + MCL (50 mg/kg) group, the AS + Celastrol (1 mg/kg) group, and the AS + Celastrol (1 mg/kg) + MCL (50 mg/kg) group. RESULTS: Compared with the AS model mice, the protein expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18 were decreased after MCL treatment. The protein expression levels of capase-1 p10, IL-1β p17, NOD-like receptor family and pyrin domain containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein (ASC) were also reduced. The protein expression levels of Interferon (IFN)-γ were down-regulated, but levels of IL-4 were increased. Western blotting and immunohistochemistry revealed that the levels of p-IκB α were up-regulated, while the levels of phosphorylated-p65 were down-regulated. After the addition of celastrol, MCL treatment significantly reduced the levels of p-p65, NLRP3, caspase-1, and ASC. Meanwhile, the levels of IFN-γ were markedly down-regulated, but the levels of IL-4 were enhanced. CONCLUSIONS: Our study found that MCL suppressed the activation of NLRP3 inflammasome and maintained the balance of Th1/Th2 via regulating NF-κB signaling. Therefore, MCL could potentially be used to treat AS. |
format | Online Article Text |
id | pubmed-7475468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-74754682020-09-17 Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway Tian, Zhong-Gu Yao, Miaomiao Chen, Jie Ann Transl Med Original Article BACKGROUND: Ankylosing spondylitis (AS) is a common form of inflammatory arthritis. Micheliolide (MCL), a sesquiterpene lactone, is reportedly involved in the alleviation of inflammatory response. This study aimed to investigate the mechanism of MCL in the treatment of AS. METHODS: Mice were randomly divided into five groups: the sham group, the MCL (50 mg/kg) group, the AS model group, the AS + MCL (20 mg/kg) group, and the AS + MCL (50 mg/kg) group. After the addition of the inhibitor celastrol, mice were randomly divided into five groups: the sham group, the AS model group, the AS + MCL (50 mg/kg) group, the AS + Celastrol (1 mg/kg) group, and the AS + Celastrol (1 mg/kg) + MCL (50 mg/kg) group. RESULTS: Compared with the AS model mice, the protein expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18 were decreased after MCL treatment. The protein expression levels of capase-1 p10, IL-1β p17, NOD-like receptor family and pyrin domain containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein (ASC) were also reduced. The protein expression levels of Interferon (IFN)-γ were down-regulated, but levels of IL-4 were increased. Western blotting and immunohistochemistry revealed that the levels of p-IκB α were up-regulated, while the levels of phosphorylated-p65 were down-regulated. After the addition of celastrol, MCL treatment significantly reduced the levels of p-p65, NLRP3, caspase-1, and ASC. Meanwhile, the levels of IFN-γ were markedly down-regulated, but the levels of IL-4 were enhanced. CONCLUSIONS: Our study found that MCL suppressed the activation of NLRP3 inflammasome and maintained the balance of Th1/Th2 via regulating NF-κB signaling. Therefore, MCL could potentially be used to treat AS. AME Publishing Company 2020-08 /pmc/articles/PMC7475468/ /pubmed/32953791 http://dx.doi.org/10.21037/atm-20-4987 Text en 2020 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Tian, Zhong-Gu Yao, Miaomiao Chen, Jie Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway |
title | Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway |
title_full | Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway |
title_fullStr | Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway |
title_full_unstemmed | Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway |
title_short | Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway |
title_sort | micheliolide alleviates ankylosing spondylitis (as) by suppressing the activation of the nlrp3 inflammasome and maintaining the balance of th1/th2 via regulating the nf-κb signaling pathway |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475468/ https://www.ncbi.nlm.nih.gov/pubmed/32953791 http://dx.doi.org/10.21037/atm-20-4987 |
work_keys_str_mv | AT tianzhonggu micheliolidealleviatesankylosingspondylitisasbysuppressingtheactivationofthenlrp3inflammasomeandmaintainingthebalanceofth1th2viaregulatingthenfkbsignalingpathway AT yaomiaomiao micheliolidealleviatesankylosingspondylitisasbysuppressingtheactivationofthenlrp3inflammasomeandmaintainingthebalanceofth1th2viaregulatingthenfkbsignalingpathway AT chenjie micheliolidealleviatesankylosingspondylitisasbysuppressingtheactivationofthenlrp3inflammasomeandmaintainingthebalanceofth1th2viaregulatingthenfkbsignalingpathway |