Cargando…
SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells
Region-specific neural progenitor cells (NPCs) can be generated from human embryonic stem cells (hESCs) by modulating signaling pathways. However, how intrinsic transcriptional factors contribute to the neural regionalization is not well characterized. Here, we generate region-specific NPCs from hES...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486433/ https://www.ncbi.nlm.nih.gov/pubmed/32905879 http://dx.doi.org/10.1016/j.isci.2020.101475 |
_version_ | 1783581334737780736 |
---|---|
author | Liu, Xinyuan Fang, Zhuoqing Wen, Jing Tang, Fan Liao, Bing Jing, Naihe Lai, Dongmei Jin, Ying |
author_facet | Liu, Xinyuan Fang, Zhuoqing Wen, Jing Tang, Fan Liao, Bing Jing, Naihe Lai, Dongmei Jin, Ying |
author_sort | Liu, Xinyuan |
collection | PubMed |
description | Region-specific neural progenitor cells (NPCs) can be generated from human embryonic stem cells (hESCs) by modulating signaling pathways. However, how intrinsic transcriptional factors contribute to the neural regionalization is not well characterized. Here, we generate region-specific NPCs from hESCs and find that SOX1 is highly expressed in NPCs with the rostral hindbrain identity. Moreover, we find that OTX2 inhibits SOX1 expression, displaying exclusive expression between the two factors. Furthermore, SOX1 knockout (KO) leads to the upregulation of midbrain genes and downregulation of rostral hindbrain genes, indicating that SOX1 is required for specification of rostral hindbrain NPCs. Our SOX1 chromatin immunoprecipitation sequencing analysis reveals that SOX1 binds to the distal region of GBX2 to activate its expression. Overexpression of GBX2 largely abrogates SOX1-KO-induced aberrant gene expression. Taken together, this study uncovers previously unappreciated role of SOX1 in early neural regionalization and provides new information for the precise control of the OTX2/GBX2 interface. |
format | Online Article Text |
id | pubmed-7486433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-74864332020-09-17 SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells Liu, Xinyuan Fang, Zhuoqing Wen, Jing Tang, Fan Liao, Bing Jing, Naihe Lai, Dongmei Jin, Ying iScience Article Region-specific neural progenitor cells (NPCs) can be generated from human embryonic stem cells (hESCs) by modulating signaling pathways. However, how intrinsic transcriptional factors contribute to the neural regionalization is not well characterized. Here, we generate region-specific NPCs from hESCs and find that SOX1 is highly expressed in NPCs with the rostral hindbrain identity. Moreover, we find that OTX2 inhibits SOX1 expression, displaying exclusive expression between the two factors. Furthermore, SOX1 knockout (KO) leads to the upregulation of midbrain genes and downregulation of rostral hindbrain genes, indicating that SOX1 is required for specification of rostral hindbrain NPCs. Our SOX1 chromatin immunoprecipitation sequencing analysis reveals that SOX1 binds to the distal region of GBX2 to activate its expression. Overexpression of GBX2 largely abrogates SOX1-KO-induced aberrant gene expression. Taken together, this study uncovers previously unappreciated role of SOX1 in early neural regionalization and provides new information for the precise control of the OTX2/GBX2 interface. Elsevier 2020-08-20 /pmc/articles/PMC7486433/ /pubmed/32905879 http://dx.doi.org/10.1016/j.isci.2020.101475 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Liu, Xinyuan Fang, Zhuoqing Wen, Jing Tang, Fan Liao, Bing Jing, Naihe Lai, Dongmei Jin, Ying SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells |
title | SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells |
title_full | SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells |
title_fullStr | SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells |
title_full_unstemmed | SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells |
title_short | SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells |
title_sort | sox1 is required for the specification of rostral hindbrain neural progenitor cells from human embryonic stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486433/ https://www.ncbi.nlm.nih.gov/pubmed/32905879 http://dx.doi.org/10.1016/j.isci.2020.101475 |
work_keys_str_mv | AT liuxinyuan sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT fangzhuoqing sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT wenjing sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT tangfan sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT liaobing sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT jingnaihe sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT laidongmei sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells AT jinying sox1isrequiredforthespecificationofrostralhindbrainneuralprogenitorcellsfromhumanembryonicstemcells |