Cargando…
Alignment and mapping methodology influence transcript abundance estimation
BACKGROUND: The accuracy of transcript quantification using RNA-seq data depends on many factors, such as the choice of alignment or mapping method and the quantification model being adopted. While the choice of quantification model has been shown to be important, considerably less attention has bee...
Autores principales: | Srivastava, Avi, Malik, Laraib, Sarkar, Hirak, Zakeri, Mohsen, Almodaresi, Fatemeh, Soneson, Charlotte, Love, Michael I., Kingsford, Carl, Patro, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487471/ https://www.ncbi.nlm.nih.gov/pubmed/32894187 http://dx.doi.org/10.1186/s13059-020-02151-8 |
Ejemplares similares
-
Improved data-driven likelihood factorizations for transcript abundance estimation
por: Zakeri, Mohsen, et al.
Publicado: (2017) -
PuffAligner: a fast, efficient and accurate aligner based on the Pufferfish index
por: Almodaresi, Fatemeh, et al.
Publicado: (2021) -
Alevin-fry unlocks rapid, accurate, and memory-frugal quantification of single-cell RNA-seq data
por: He, Dongze, et al.
Publicado: (2022) -
A space and time-efficient index for the compacted colored de Bruijn graph
por: Almodaresi, Fatemeh, et al.
Publicado: (2018) -
A Bayesian framework for inter-cellular information sharing improves dscRNA-seq quantification
por: Srivastava, Avi, et al.
Publicado: (2020)