Cargando…

PTWAS: investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis

We propose a new computational framework, probabilistic transcriptome-wide association study (PTWAS), to investigate causal relationships between gene expressions and complex traits. PTWAS applies the established principles from instrumental variables analysis and takes advantage of probabilistic eQ...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuhua, Quick, Corbin, Yu, Ketian, Barbeira, Alvaro, Luca, Francesca, Pique-Regi, Roger, Kyung Im, Hae, Wen, Xiaoquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488550/
https://www.ncbi.nlm.nih.gov/pubmed/32912253
http://dx.doi.org/10.1186/s13059-020-02026-y
Descripción
Sumario:We propose a new computational framework, probabilistic transcriptome-wide association study (PTWAS), to investigate causal relationships between gene expressions and complex traits. PTWAS applies the established principles from instrumental variables analysis and takes advantage of probabilistic eQTL annotations to delineate and tackle the unique challenges arising in TWAS. PTWAS not only confers higher power than the existing methods but also provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type-specific gene-to-trait effects. We illustrate the power of PTWAS by analyzing the eQTL data across 49 tissues from GTEx (v8) and GWAS summary statistics from 114 complex traits.