Cargando…
PTWAS: investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis
We propose a new computational framework, probabilistic transcriptome-wide association study (PTWAS), to investigate causal relationships between gene expressions and complex traits. PTWAS applies the established principles from instrumental variables analysis and takes advantage of probabilistic eQ...
Autores principales: | Zhang, Yuhua, Quick, Corbin, Yu, Ketian, Barbeira, Alvaro, Luca, Francesca, Pique-Regi, Roger, Kyung Im, Hae, Wen, Xiaoquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488550/ https://www.ncbi.nlm.nih.gov/pubmed/32912253 http://dx.doi.org/10.1186/s13059-020-02026-y |
Ejemplares similares
-
Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits
por: Okamoto, Jeffrey, et al.
Publicado: (2023) -
Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization
por: Wen, Xiaoquan, et al.
Publicado: (2017) -
High-throughput characterization of genetic effects on DNA–protein binding and gene transcription
por: Kalita, Cynthia A., et al.
Publicado: (2018) -
Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults
por: Li, Binglan, et al.
Publicado: (2021) -
SR-TWAS: Leveraging Multiple Reference Panels to Improve TWAS Power by Ensemble Machine Learning
por: Parrish, Randy L., et al.
Publicado: (2023)