Cargando…
An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia
BACKGROUND: Therapeutic cancer vaccines are an attractive approach for treating malignant tumours, and successful tumour eradication depends primarily on controlling tumour immunosuppression status as well as heterogeneity of tumour cells driven by epigenetic alterations. METHODS: Peptide-loaded den...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492404/ https://www.ncbi.nlm.nih.gov/pubmed/32595211 http://dx.doi.org/10.1038/s41416-020-0955-y |
_version_ | 1783582370200289280 |
---|---|
author | Shin, A-Ri Lee, Sang-Eun Choi, Haeyoun Sohn, Hyun-Jung Cho, Hyun-Il Kim, Tai-Gyu |
author_facet | Shin, A-Ri Lee, Sang-Eun Choi, Haeyoun Sohn, Hyun-Jung Cho, Hyun-Il Kim, Tai-Gyu |
author_sort | Shin, A-Ri |
collection | PubMed |
description | BACKGROUND: Therapeutic cancer vaccines are an attractive approach for treating malignant tumours, and successful tumour eradication depends primarily on controlling tumour immunosuppression status as well as heterogeneity of tumour cells driven by epigenetic alterations. METHODS: Peptide-loaded dendritic cell (DC) prime and non-infectious peptide booster heterologous immunisations were assessed for the immunogenicity of polo-like kinase-1 (PLK1)-derived peptides. Heterologous vaccination regimen targeting multiple shared tumour antigens simultaneously with PD-L1 blockade was assessed against murine myeloid leukaemia. RESULTS: A synthetic PLK1(122) (DSDFVFVVL)-based heterologous vaccination generated large numbers of long-lasting antigen-specific CD8 T-cells eliciting therapeutic effects against various established tumours. The therapeutic efficacy of single antigen-targeting PLK1(122)-based vaccine with sufficient endurance of PD-L1 blockade toward C1498 leukaemia relied on the heterogeneous clonal levels of MHC-I and PD-L1 expression. A novel multi-peptide-based vaccination targeting PLK1 and survivin simultaneously along with PD1 blockade led to complete tumour eradication and long-term survival in mice with clonally heterologous C1498 myeloid leukaemia. CONCLUSIONS: Our findings suggest that PLK1 could be an attractive immunotherapeutic target antigen for cancer immunotherapy, and that similar strategies would be applicable for the optimisation of cancer vaccines for the treatment of numerous viral diseases and malignant tumours. |
format | Online Article Text |
id | pubmed-7492404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74924042021-06-29 An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia Shin, A-Ri Lee, Sang-Eun Choi, Haeyoun Sohn, Hyun-Jung Cho, Hyun-Il Kim, Tai-Gyu Br J Cancer Article BACKGROUND: Therapeutic cancer vaccines are an attractive approach for treating malignant tumours, and successful tumour eradication depends primarily on controlling tumour immunosuppression status as well as heterogeneity of tumour cells driven by epigenetic alterations. METHODS: Peptide-loaded dendritic cell (DC) prime and non-infectious peptide booster heterologous immunisations were assessed for the immunogenicity of polo-like kinase-1 (PLK1)-derived peptides. Heterologous vaccination regimen targeting multiple shared tumour antigens simultaneously with PD-L1 blockade was assessed against murine myeloid leukaemia. RESULTS: A synthetic PLK1(122) (DSDFVFVVL)-based heterologous vaccination generated large numbers of long-lasting antigen-specific CD8 T-cells eliciting therapeutic effects against various established tumours. The therapeutic efficacy of single antigen-targeting PLK1(122)-based vaccine with sufficient endurance of PD-L1 blockade toward C1498 leukaemia relied on the heterogeneous clonal levels of MHC-I and PD-L1 expression. A novel multi-peptide-based vaccination targeting PLK1 and survivin simultaneously along with PD1 blockade led to complete tumour eradication and long-term survival in mice with clonally heterologous C1498 myeloid leukaemia. CONCLUSIONS: Our findings suggest that PLK1 could be an attractive immunotherapeutic target antigen for cancer immunotherapy, and that similar strategies would be applicable for the optimisation of cancer vaccines for the treatment of numerous viral diseases and malignant tumours. Nature Publishing Group UK 2020-06-29 2020-09-15 /pmc/articles/PMC7492404/ /pubmed/32595211 http://dx.doi.org/10.1038/s41416-020-0955-y Text en © The Author(s), under exclusive licence to Cancer Research UK 2020 https://creativecommons.org/licenses/by/4.0/Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0). |
spellingShingle | Article Shin, A-Ri Lee, Sang-Eun Choi, Haeyoun Sohn, Hyun-Jung Cho, Hyun-Il Kim, Tai-Gyu An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia |
title | An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia |
title_full | An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia |
title_fullStr | An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia |
title_full_unstemmed | An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia |
title_short | An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia |
title_sort | effective peptide vaccine strategy circumventing clonal mhc heterogeneity of murine myeloid leukaemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492404/ https://www.ncbi.nlm.nih.gov/pubmed/32595211 http://dx.doi.org/10.1038/s41416-020-0955-y |
work_keys_str_mv | AT shinari aneffectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT leesangeun aneffectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT choihaeyoun aneffectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT sohnhyunjung aneffectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT chohyunil aneffectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT kimtaigyu aneffectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT shinari effectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT leesangeun effectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT choihaeyoun effectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT sohnhyunjung effectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT chohyunil effectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia AT kimtaigyu effectivepeptidevaccinestrategycircumventingclonalmhcheterogeneityofmurinemyeloidleukaemia |