Cargando…
Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer
HDAC inhibitors are efficacious for treating lymphoma, but display limited efficacy in treating solid tumors. Here, we investigated the relationship between HDAC inhibitor resistance and the tumor immune environment in colorectal cancer. Our data indicated that among the investigated immune factors,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493945/ https://www.ncbi.nlm.nih.gov/pubmed/32934224 http://dx.doi.org/10.1038/s41419-020-02968-y |
_version_ | 1783582659967975424 |
---|---|
author | Li, Yuxin Liu, Yao Zhao, Na Yang, Xiaojun Li, Yaqing Zhai, Fangzheng Zang, Xingxing Cui, Wei |
author_facet | Li, Yuxin Liu, Yao Zhao, Na Yang, Xiaojun Li, Yaqing Zhai, Fangzheng Zang, Xingxing Cui, Wei |
author_sort | Li, Yuxin |
collection | PubMed |
description | HDAC inhibitors are efficacious for treating lymphoma, but display limited efficacy in treating solid tumors. Here, we investigated the relationship between HDAC inhibitor resistance and the tumor immune environment in colorectal cancer. Our data indicated that among the investigated immune factors, B7x expression was enhanced in HDAC inhibitor-resistant colorectal cancer models in vitro and in vivo. In addition, gene manipulation results demonstrated that xenograft mice with tumors derived from a B7x-overexpressing CT-26 colorectal cancer cell line were resistant to HDAC inhibitor treatment. Notably, we found that there is a negative relationship between HDAC and B7x expression in both colorectal cancer cell lines and patients’ tumors. Furthermore, our data indicated that elevated expression of B7x was related to a poor prognosis in colorectal tumor patients. Interestingly, treatment with a specific inhibitor or siRNA of HDAC3, but not HDAC2, 6, and 8, resulted in obvious upregulation of B7x expression in colorectal cancer cells. In addition, our data showed that a cell line with high HDAC3 expression and low B7x expression had decreased enrichment of acetylated histone H3 in the promoter region of the gene encoding B7x. This pattern was reversed by addition of HDAC3 inhibitors. Mechanistically, we found that HDAC3 regulated B7x transcription by promoting the binding of the transcription activator C/EBP-α with the B7x promoter region. Importantly, our data indicated that an antibody neutralizing B7x augmented the response to HDAC inhibitor in the colorectal cancer xenograft model and the lung metastasis model by increasing the ratios of both CD4-positive and CD8-positive T cells. In summary, we demonstrated a role of B7x in HDAC inhibitor resistance and identified the mechanism that dysregulates B7x in colorectal cancer. Our work provides a novel strategy to overcome HDAC inhibitor resistance. |
format | Online Article Text |
id | pubmed-7493945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74939452020-10-01 Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer Li, Yuxin Liu, Yao Zhao, Na Yang, Xiaojun Li, Yaqing Zhai, Fangzheng Zang, Xingxing Cui, Wei Cell Death Dis Article HDAC inhibitors are efficacious for treating lymphoma, but display limited efficacy in treating solid tumors. Here, we investigated the relationship between HDAC inhibitor resistance and the tumor immune environment in colorectal cancer. Our data indicated that among the investigated immune factors, B7x expression was enhanced in HDAC inhibitor-resistant colorectal cancer models in vitro and in vivo. In addition, gene manipulation results demonstrated that xenograft mice with tumors derived from a B7x-overexpressing CT-26 colorectal cancer cell line were resistant to HDAC inhibitor treatment. Notably, we found that there is a negative relationship between HDAC and B7x expression in both colorectal cancer cell lines and patients’ tumors. Furthermore, our data indicated that elevated expression of B7x was related to a poor prognosis in colorectal tumor patients. Interestingly, treatment with a specific inhibitor or siRNA of HDAC3, but not HDAC2, 6, and 8, resulted in obvious upregulation of B7x expression in colorectal cancer cells. In addition, our data showed that a cell line with high HDAC3 expression and low B7x expression had decreased enrichment of acetylated histone H3 in the promoter region of the gene encoding B7x. This pattern was reversed by addition of HDAC3 inhibitors. Mechanistically, we found that HDAC3 regulated B7x transcription by promoting the binding of the transcription activator C/EBP-α with the B7x promoter region. Importantly, our data indicated that an antibody neutralizing B7x augmented the response to HDAC inhibitor in the colorectal cancer xenograft model and the lung metastasis model by increasing the ratios of both CD4-positive and CD8-positive T cells. In summary, we demonstrated a role of B7x in HDAC inhibitor resistance and identified the mechanism that dysregulates B7x in colorectal cancer. Our work provides a novel strategy to overcome HDAC inhibitor resistance. Nature Publishing Group UK 2020-09-15 /pmc/articles/PMC7493945/ /pubmed/32934224 http://dx.doi.org/10.1038/s41419-020-02968-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Yuxin Liu, Yao Zhao, Na Yang, Xiaojun Li, Yaqing Zhai, Fangzheng Zang, Xingxing Cui, Wei Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer |
title | Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer |
title_full | Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer |
title_fullStr | Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer |
title_full_unstemmed | Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer |
title_short | Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer |
title_sort | checkpoint regulator b7x is epigenetically regulated by hdac3 and mediates resistance to hdac inhibitors by reprogramming the tumor immune environment in colorectal cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493945/ https://www.ncbi.nlm.nih.gov/pubmed/32934224 http://dx.doi.org/10.1038/s41419-020-02968-y |
work_keys_str_mv | AT liyuxin checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT liuyao checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT zhaona checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT yangxiaojun checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT liyaqing checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT zhaifangzheng checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT zangxingxing checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer AT cuiwei checkpointregulatorb7xisepigeneticallyregulatedbyhdac3andmediatesresistancetohdacinhibitorsbyreprogrammingthetumorimmuneenvironmentincolorectalcancer |