Cargando…
XMU-MP-1 induces growth arrest in a model human mini-organ and antagonises cell cycle-dependent paclitaxel cytotoxicity
BACKGROUND: XMU-MP-1 is an inhibitor of the Hippo pathway kinases MST1/2 and has been shown to promote the downstream activation of the pro-proliferative, pro-regenerative and anti-apoptotic transcriptional regulator YAP1. We tested whether XMU-MP-1 can activate YAP1 in a model human mini-organ, nam...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495873/ https://www.ncbi.nlm.nih.gov/pubmed/32973917 http://dx.doi.org/10.1186/s13008-020-00067-0 |
Sumario: | BACKGROUND: XMU-MP-1 is an inhibitor of the Hippo pathway kinases MST1/2 and has been shown to promote the downstream activation of the pro-proliferative, pro-regenerative and anti-apoptotic transcriptional regulator YAP1. We tested whether XMU-MP-1 can activate YAP1 in a model human mini-organ, namely the hair follicle, to determine whether it can be pharmacologically exploited to promote regeneration in the hair follicle as a novel strategy to treat pathological hair loss disorders. RESULTS: XMU-MP-1 treatment inhibited MOB1 phosphorylation but did not increase active YAP1 in the hair follicle. Rather than promote proliferation, XMU-MP-1 serendipitously decreased the number of Ki-67+, EdU+ and phospho histone H3+ hair matrix keratinocytes and antagonised the cytotoxic effects of paclitaxel. CONCLUSIONS: XMU-MP-1 perturbs epithelial cell cycle progression in a model human mini-organ. This may arise as an off-target effect, especially when XMU-MP-1 has been described to strongly inhibit 21 additional kinases beyond MST1/2. Therefore, whilst these effects may be dependent on tissue context, researchers should exercise caution when interpreting the effects of XMU-MP-1, especially in tissues with actively proliferating cell populations. |
---|