Cargando…
Short k-mer abundance profiles yield robust machine learning features and accurate classifiers for RNA viruses
High-throughput sequencing technologies have greatly enabled the study of genomics, transcriptomics and metagenomics. Automated annotation and classification of the vast amounts of generated sequence data has become paramount for facilitating biological sciences. Genomes of viruses can be radically...
Autores principales: | Alam, Md. Nafis Ul, Chowdhury, Umar Faruq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500682/ https://www.ncbi.nlm.nih.gov/pubmed/32946529 http://dx.doi.org/10.1371/journal.pone.0239381 |
Ejemplares similares
-
K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes
por: Orozco-Arias, Simon, et al.
Publicado: (2021) -
Selecting Accurate Classifier Models for a MERS-CoV Dataset
por: AlMoammar, Afnan, et al.
Publicado: (2018) -
Binning unassembled short reads based on k-mer abundance covariance using sparse coding
por: Kyrgyzov, Olexiy, et al.
Publicado: (2020) -
REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets
por: Marchet, Camille, et al.
Publicado: (2020) -
An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes
por: Solis-Reyes, Stephen, et al.
Publicado: (2018)