Cargando…

Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1

Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca(2+)-dependent vesicle release and post-tetanic potentiation (PTP). We assess e...

Descripción completa

Detalles Bibliográficos
Autores principales: Huson, Vincent, Meijer, Marieke, Dekker, Rien, ter Veer, Mirelle, Ruiter, Marvin, van Weering, Jan RT, Verhage, Matthijs, Cornelisse, Lennart Niels
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500951/
https://www.ncbi.nlm.nih.gov/pubmed/32831174
http://dx.doi.org/10.7554/eLife.55713
Descripción
Sumario:Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca(2+)-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca(2+)-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1(D232N)) or increasing its hydrophobicity (Syt1(4W)), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt1(9Pro)) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.