Cargando…
Protective effects of DPP-4 inhibitor on podocyte injury in glomerular diseases
BACKGROUND: Dipeptidyl peptidase-4 (DPP-4) is a serine protease that inhibits the degradation of glucagon-like peptide 1. DPP-4 inhibitors are used worldwide to treat type 2 diabetes mellitus and were recently shown to have pleiotropic effects such as anti-oxidant, anti-inflammatory, and anti-fibrot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501714/ https://www.ncbi.nlm.nih.gov/pubmed/32948146 http://dx.doi.org/10.1186/s12882-020-02060-9 |
Sumario: | BACKGROUND: Dipeptidyl peptidase-4 (DPP-4) is a serine protease that inhibits the degradation of glucagon-like peptide 1. DPP-4 inhibitors are used worldwide to treat type 2 diabetes mellitus and were recently shown to have pleiotropic effects such as anti-oxidant, anti-inflammatory, and anti-fibrotic actions. DPP-4 inhibitors improve albuminuria and renal injury including glomerular damage independent of its hypoglycemic effect. Although DPP-4 is mainly expressed in the kidney, the physiological function of DPP-4 remains unclear. METHODS: The localization of renal DPP-4 activity was determined in human renal biopsy specimens with glycyl-1-prolyl-4-methoxy-2-naphthylamide and the effects of a DPP-4 inhibitor were examined in human cultured podocyte. RESULTS: DPP-4 activity under normal conditions was observed in some Bowman’s capsular epithelial cells and proximal tubules, but not in the glomerulus. DPP-4 activity was observed in crescent formation in anti-neutrophil myeloperoxidase cytoplasmic antigen antibody nephritis, nodular lesions in diabetic nephropathy, and some podocytes in focal segmental glomerulosclerosis. Notably, the DPP-4 inhibitor saxagliptin suppressed DPP-4 activity in podocytes and the proximal tubules. To assess the effect of DPP-4 inhibitor on podocytes, human cultured podocytes were injured by Adriamycin, which increased DPP-4 activity; this activity was dose-dependently suppressed by saxagliptin. Treatment with saxagliptin maintained the structure of synaptopodin and RhoA. Saxagliptin also improved the detachment of podocytes. CONCLUSIONS: DPP-4 activity induces degradation of synaptopodin and reduction of RhoA, resulting in destruction of the podocyte cytoskeleton. Saxagliptin may have pleiotropic effects to prevent podocyte injury. |
---|