Cargando…
Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers
Enzyme turnover numbers (k(cat)s) are essential for a quantitative understanding of cells. Because k(cat)s are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo k(cat)s...
Autores principales: | Heckmann, David, Campeau, Anaamika, Lloyd, Colton J., Phaneuf, Patrick V., Hefner, Ying, Carrillo-Terrazas, Marvic, Feist, Adam M., Gonzalez, David J., Palsson, Bernhard O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502767/ https://www.ncbi.nlm.nih.gov/pubmed/32873645 http://dx.doi.org/10.1073/pnas.2001562117 |
Ejemplares similares
-
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
por: Heckmann, David, et al.
Publicado: (2018) -
Proteome allocation is linked to transcriptional regulation through a modularized transcriptome
por: Patel, Arjun, et al.
Publicado: (2023) -
Development of muscle atrophy and loss of function in a Gulf-War illness model: underlying mechanisms
por: Ramirez-Sanchez, Israel, et al.
Publicado: (2020) -
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
por: Heckmann, David, et al.
Publicado: (2018) -
Causal mutations from adaptive laboratory evolution are outlined by multiple scales of genome annotations and condition-specificity
por: Phaneuf, Patrick V., et al.
Publicado: (2020)