Cargando…
16-Hydroxycleroda-3,13-Dien-15,16-Olide Induces Apoptosis in Human Bladder Cancer Cells through Cell Cycle Arrest, Mitochondria ROS Overproduction, and Inactivation of EGFR-Related Signalling Pathways
A clerodane diterpene compound 16-hydroxycleroda-3,13-dien-15,16-olide (CD) is considered a therapeutic agent with pharmacological activities. The present study investigated the mechanisms of CD-induced apoptosis in T24 human bladder cancer cells. CD inhibited cell proliferation in a concentration a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504739/ https://www.ncbi.nlm.nih.gov/pubmed/32872665 http://dx.doi.org/10.3390/molecules25173958 |
Sumario: | A clerodane diterpene compound 16-hydroxycleroda-3,13-dien-15,16-olide (CD) is considered a therapeutic agent with pharmacological activities. The present study investigated the mechanisms of CD-induced apoptosis in T24 human bladder cancer cells. CD inhibited cell proliferation in a concentration and time-dependent manner. CD-induced overproduction of reactive oxygen species and reduced mitochondrial membrane potential, associated with reduced expression of Bcl-2 and increased levels of cytosolic cytochrome c, cleaved PARP-1 and caspase-3. In addition, CD treatment led to cell cycle arrest at the G0/G1 phase and inhibited expression of cyclin D1 and cyclin-dependent kinases 2 and 4 and led to increased levels of p21, p27Kip1 and p53. All of these events were accompanied with a reduction of pEGFR, pMEK1/2, pERK1/2, pAkt, pmTOR, pP70S6K1, HIF-1α, c-Myc and VEGF. RNAseq-based analysis revealed that CD-induced cell death was characterised by an increased expression of stress and apoptotic-related genes as well as inhibition of the cell cycle-related genes. In summary, CD induces apoptosis in T24 bladder cancer cells through targeting multiple intracellular signaling pathways as a result of oxidative stress and cell cycle arrest. |
---|