Cargando…
Identification of pathogenic missense mutations using protein stability predictors
Attempts at using protein structures to identify disease-causing mutations have been dominated by the idea that most pathogenic mutations are disruptive at a structural level. Therefore, computational stability predictors, which assess whether a mutation is likely to be stabilising or destabilising...
Autores principales: | Gerasimavicius, Lukas, Liu, Xin, Marsh, Joseph A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506547/ https://www.ncbi.nlm.nih.gov/pubmed/32958805 http://dx.doi.org/10.1038/s41598-020-72404-w |
Ejemplares similares
-
Correspondence between functional scores from deep mutational scans and predicted effects on protein stability
por: Gerasimavicius, Lukas, et al.
Publicado: (2023) -
Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure
por: Gerasimavicius, Lukas, et al.
Publicado: (2022) -
PremPS: Predicting the impact of missense mutations on protein stability
por: Chen, Yuting, et al.
Publicado: (2020) -
Identification of a novel pathogenic missense mutation in PRPF31 using whole exome sequencing: a case report
por: Bryant, Laura, et al.
Publicado: (2019) -
Circuit topology predicts pathogenicity of missense mutations
por: Woodard, Jaie, et al.
Publicado: (2022)