Cargando…
Application of Machine Learning for the in-Field Correction of a PM(2.5) Low-Cost Sensor Network
Many low-cost sensors (LCSs) are distributed for air monitoring without any rigorous calibrations. This work applies machine learning with PM(2.5) from Taiwan monitoring stations to conduct in-field corrections on a network of 39 PM(2.5) LCSs from July 2017 to December 2018. Three candidate models w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506620/ https://www.ncbi.nlm.nih.gov/pubmed/32899301 http://dx.doi.org/10.3390/s20175002 |